BrainAge (a subject’s apparent age predicted from neuroimaging data) is an important biomarker of brain aging. The deviation of BrainAge from true age has been associated with psychiatric and neurological disease, and has proven effective in predicting conversion from mild cognitive impairment (MCI) to dementia. Conventionally, 3D convolutional neural networks and their variants are used for brain age prediction. However, these networks have a larger number of parameters and take longer to train than their 2D counterparts. Here we propose a 2D slice-based recurrent neural network model, which takes in an ordered sequence of sagittal slices as input to predict the brain age. The model consists of two components: a 2D convolutional neural network (CNN), which encodes the relevant features from the slices, and a recurrent neural network (RNN) that learns the relationship between slices. We compare our method to other recently proposed methods, including 3D deep convolutional regression networks, information theoretic models, and bag-of-features (BoF) models (such as BagNet) - where the classification is based on the occurrences of local features, without taking into consideration their global spatial ordering. In our experiments, our proposed model performs comparably to, or better than, the current state of the art models, with nearly half the number of parameters and a lower convergence time.
We consider the task of speech source localization from a binaural recording using interaural time difference (ITD). A typical approach is to process binaural speech using gammatone filters and calculate frame-level ITD in each subband. The ITDs in each gammatone subband are statistically modelled using Gaussian mixture models (GMMs) for every direction during training. Given a binaural test-speech, the source is localized using maximum likelihood (ML) criterion. In this work, we propose a subband weighting scheme where subband likelihoods are weighted based on their reliability. We measure the reliability of a subband using the average frame level localization error obtained for the respective subbands. These reliability values are used as the weights for each subband likelihood prior to combining the likelihoods for ML estimation. We also introduce non-linear warping of these weights to accommodate and analyse a larger space of possible subband weights. Experiments on Subject 003 from the CIPIC database reveal that weighting the subbands is better than the unweighted scheme of combining likelihoods.
Early diagnosis and detection are important tasks in controlling the spread of COVID-19. A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images and X-rays. However, these methods suffer from biased results and inaccurate detection of the disease. So, the current research article developed Oppositional-based Chimp Optimization Algorithm and Deep Dense Convolutional Neural Network (OCOA-DDCNN) for COVID-19 prediction using CT images in IoT environment. The proposed methodology works on the basis of two stages such as pre-processing and prediction. Initially, CT scan images generated from prospective COVID-19 are collected from open-source system using IoT devices. The collected images are then preprocessed using Gaussian filter. Gaussian filter can be utilized in the removal of unwanted noise from the collected CT scan images. Afterwards, the preprocessed images are sent to prediction phase. In this phase, Deep Dense Convolutional Neural Network (DDCNN) is applied upon the pre-processed images. The proposed classifier is optimally designed with the consideration of Oppositional-based Chimp Optimization Algorithm (OCOA). This algorithm is utilized in the selection of optimal parameters for the proposed classifier. Finally, the proposed technique is used in the prediction of COVID-19 and classify the results as either COVID-19 or non-COVID-19. The projected method was implemented in MATLAB and the performances were evaluated through statistical measurements. The proposed method was contrasted with conventional techniques such as Convolutional Neural Network-Firefly Algorithm (CNN-FA), Emperor Penguin Optimization (CNN-EPO)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.