CD47 has been implicated in both positive and negative regulation of T cells as well as in T cell death. To clarify the role of CD47 in T cell function, we have studied the mechanism of T cell death in response to CD47 ligands, including mAb 1F7, thrombospondin-1, and a CD47 agonist peptide derived from it. CD47−/− Jurkat T cells (JINB8) were resistant to killing by all three ligands, indicating the essential role of CD47. Primary human T cells were also killed by CD47 ligands, but only after activation with anti-CD3. CD47-mediated cell death occurred without active caspases, DNA fragmentation, or Bcl-2 degradation. Pretreatment of Jurkat and primary T cells with pertussis toxin (PTX) prevented CD47-mediated death, indicating the involvement of Giα. Pretreatment of T cells with 8-bromo cAMP, forskolin, or 3-isobutyl-1-methylxanthine prevented the CD47-mediated apoptosis, and 1F7 dramatically reduced intracellular cAMP levels, an effect reversed with PTX. H89 and protein kinase A (PKA) inhibitor peptide, a specific PKA inhibitor, prevented rescue of T cells by PTX, 8-bromo cAMP, and forskolin, indicating a direct role for one or more PKA substrates. Thus, CD47-mediated killing of activated T cells occurs by a novel pathway involving regulation of cAMP levels by heterotrimeric Giα with subsequent effects mediated by PKA.
CD47 is a ubiquitously expressed cell surface glycoprotein that associates with integrins and regulates chemotaxis, migration, and activation of leukocytes. CD47 is also a ligand for signal regulatory protein α, a cell surface receptor expressed on monocytes, macrophages, granulocytes, and dendritic cell (DC) subsets that regulates cell activation, adhesion, and migration. Although the function of CD47 in macrophages and granulocytes has been studied in detail, little is known about the role of CD47 in DC biology in vivo. In this study we demonstrate that CD47−/− mice exhibit a selective reduction of splenic CD11chighCD11bhighCD8α−CD4+ DCs. These DCs correspond to marginal zone DCs and express signal regulatory protein α, possibly explaining their selective deficiency in CD47−/− mice. Deficiency of marginal zone DCs resulted in impairment of IgG responses to corpusculate T cell-independent Ags. Although epidermal DCs were present in normal numbers in CD47−/− mice, their migration to draining lymph nodes in response to contact sensitization was impaired, while their maturation was intact. In vitro, CD47−/− mature DCs showed normal CCR7 expression but impaired migration to CCL-19, whereas immature DC response to CCL-5 was only slightly impaired. These results demonstrate a fundamental role of CD47 in DC migration in vivo and in vitro and in the function of marginal zone DCs.
BackgroundThe present study was motivated by the need to design a safe nano-carrier for the delivery of doxorubicin which could be tolerant to normal cells. PCL63-b-PNVP90 was loaded with doxorubicin (6 mg/ml), and with 49.8% drug loading efficiency; it offers a unique platform providing selective immune responses against lymphoma.MethodsIn this study, we have used micelles of amphiphilic PCL63-b-PNVP90 block copolymer as nano-carrier for controlled release of doxorubicin (DOX). DOX is physically entrapped and stabilized in the hydrophobic cores of the micelles and biological roles of these micelles were evaluated in lymphoma.ResultsDOX loaded PCL63-b-PNVP90 block copolymer micelles (DOX-PCL63-b-PNVP90) shows enhanced growth inhibition and cytotoxicity against human (K-562, JE6.1 and Raji) and mice lymphoma cells (Dalton's lymphoma, DL). DOX-PCL63-b-PNVP90 demonstrates higher levels of tumoricidal effect against DOX-resistant tumor cells compared to free DOX. DOX-PCL63-b-PNVP90 demonstrated effective drug loading and a pH-responsive drug release character besides exhibiting sustained drug release performance in in-vitro and intracellular drug release experiments.ConclusionUnlike free DOX, DOX-PCL63-b-PNVP90 does not show cytotoxicity against normal cells. DOX-PCL63-b-PNVP90 prolonged the survival of tumor (DL) bearing mice by enhancing the apoptosis of the tumor cells in targeted organs like liver and spleen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.