Irreversible electroporation (IRE) is a non-thermal ablation technique that is used clinically in selected patients with locally advanced pancreatic cancer, but most patients develop recurrent distant metastatic disease. We hypothesize that IRE can induce an in situ vaccination effect by releasing tumor neoantigens in an inflammatory context. Using an immunocompetent mouse model, we demonstrated that IRE alone produced complete regression of subcutaneous tumors in approximately 20%−30% of mice. IRE was not effective in immunodeficient mice. Mice with complete response to IRE demonstrated prophylactic immunity and remained tumor-free when rechallenged with secondary tumors on the contralateral flank. CD8 + T-cells from IRE-responsive mice were reactive against peptides representing model inherent alloantigens and conferred protection against tumor challenge when adoptively transferred into immunocompromised, tumornaïve mice. Combining IRE with intratumoral toll-like receptor-7 (TLR7) agonist (1V270) and systemic anti-programmed death-1 receptor (PD)-1 checkpoint blockade resulted in improved treatment responses. This combination also resulted in elimination of untreated concomitant distant tumors (abscopal effects), an effect not seen with IRE alone. These results suggest that the systemic anti-tumor immune response triggered by IRE can be enhanced by stimulating the innate immune system with a TLR7 agonist and the adaptive immune system with anti-PD-1 checkpoint blockade simultaneously. Combinatorial approaches such as this may help overcome the immunosuppressive pancreatic cancer microenvironment.
free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre -including this research content -immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition-based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.