Two porous hydrogen-bonded organic frameworks (HOFs) based on arene sulfonates and guanidinium ions are reported. As a result of the presence of ionic backbones appended with protonic source, the compounds exhibit ultra-high proton conduction values (σ) 0.75× 10(-2) S cm(-1) and 1.8×10(-2) S cm(-1) under humidified conditions. Also, they have very low activation energy values and the highest proton conductivity at ambient conditions (low humidity and at moderate temperature) among porous crystalline materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). These values are not only comparable to the conventionally used proton exchange membranes, such as Nafion used in fuel cell technologies, but is also the highest value reported in organic-based porous architectures. Notably, this report inaugurates the usage of crystalline hydrogen-bonded porous organic frameworks as solid-state proton conducting materials.
Highly selective and sensitive aqueous-phase detection of nitro explosive 2,4,6-trinitrophenol (TNP) by a hydrolytically stable 3D luminescent metal-organic framework is reported. The compound senses TNP exclusively even in the presence of other nitro-compounds, with an unprecedented sensitivity in the MOF regime by means of strategic deployment of its free amine groups. Such an accurate sensing of TNP, widely recognized as a harmful environmental contaminant in water media, establishes this new strategic approach as one of the frontiers to tackle present-day security and health concerns in a real-time scenario.
Metal-organic frameworks (MOFs) have evolved to be next-generation utility materials because of their serviceability in a wide variety of applications. Built from organic ligands with multiple binding sites in conjunction with metal ions/clusters, these materials have found profound advantages over their other congeners in the domain of porous materials. The plethora of applications that these materials encompass has motivated material chemists to develop such novel materials, and the catalogue of MOFs is thus ever-escalating. One key feature that MOFs possess is their responsiveness toward incoming guest molecules, resulting in changes in their physical and chemical properties. Such uniqueness generally arises owing to the influenceable ligands and/or metal units that govern the formation of these ordered architectures. The suitable host-guest interactions play an important role in determining the specific responses of these materials and thus find important applications in sensing, catalysis, separation, conduction, etc. In this Account, we focus on the two most relevant applications based on the host-guest interactions that are carried out in our lab, viz., separation and sensing of small molecules. Separation of liquid-phase aromatic hydrocarbons by less energy-intensive adsorption processes has gained attention recently. Because of their tailored structures and functionalized pore surfaces, MOFs have become vital candidates in molecular separation. Prefunctionalization of MOFs by astute choice of ligands and/or metal centers results in targeted separation processes in which the molecular sieving effect plays a crucial role. In this view, separation of C and C liquid aromatic hydrocarbons, which are essential feedstock in various chemical industries, is one area of research that requires significant attention because of the gruesome separation techniques adopted in such industries. Also, from the environmental perspective, separation of oil/water mixtures demands significant attention because of the hazards of marine oil spillage. We have achieved successful separation of such by careful impregnation of hydrophobic moieties inside the nanochannels of MOFs, resulting in unprecedented efficiency in oil/water separation. Also, recognition of small molecules using optical methods (fluorescence, UV, etc.) has been extended to achieve sensing of various neutral species and anions that are important from environmental point of view. Incorporation of secondary functional groups has been utilized to sense nitroaromatic compounds (NACs) and other small molecules such as HS, NO, and aromatic phenols. We have also utilized the postfunctionalization strategy via ion exchange to fabricate MOFs for sensing of environmentally toxic and perilous anionic species such as CN and oxoanions. Our current endeavors to explore the applicability of MOFs in these two significant areas have widened the scope of research, and attempts to fabricate MOFs for real-time applications are underway.
Environmental pollution and its after-effects have become global concerns in recent years. Among all types of pollution, water pollution has been considered as a major threat in recent years; this problem will be even worse in the near future. In the 21st century, water recycling has become a crucial issue as more regions across the globe are witnessing a water crisis. Detoxification of wastewater via adsorptive removal or photocatalytic degradation for achieving purified and drinkable water has been determined as environmentally benign, energy economic and cost-effective. In this context, porous materials have gained enormous research consideration for detection of contaminants in effluents and for treatment of wastewater. A combination of high porosity, robustness and structural tunibility makes these nanosorbents stand out as materials in environmental remediation. Metal–organic frameworks, covalent organic frameworks and porous organic solids are among the versatile porous materials extensively investigated toward clean environment application. This review intends to provide a summarized compilation of recent research progress in sensing and sequestration of organic pollutants in advanced porous materials.
Prompt and selective detection of nitro explosives in the aqueous phase is in high demand to meet homeland security and environmental concerns. Herein we report the chemically stable porous metal organic framework UiO-68@NH2 with a pendant recognition site for selective detection of the nitro-aromatic explosive TNP in the aqueous phase. The pendant Lewis basic amine moieties are expected to selectively interact with TNP via electrostatic interactions and act as recognition sites for TNP. The MOF can detect the presence of TNP in water at a concentration as low as 0.4 ppm with a response time of a few seconds. In addition, both excitation and emission wavelengths of the MOF are in the visible region. The high selectivity was observed even in the presence of competing nitro analytes in the aqueous phase. The quenching constant for TNP was found to be 5.8 × 10(4) M(-1) which is 23 times higher than that for TNT and for RDX, demonstrating superior and selective quenching ability. This unprecedented selectivity is ascribed to electron-transfer and energy-transfer mechanisms as well as electrostatic interactions between TNP and the MOF. An MOF-coated paper strip that we prepared demonstrated fast and selective response to TNP in water, which represents a first step towards a practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.