Tween-80-n-butanol-diesel-water microemulsion systems with various surfactant:cosurfactant (S:C) ratio have been reported as a class of alternative diesel fuel from their phase behavior, clouding phenomena, conductivity, turbidity, and inflammation studies. Temperature induced clouding of microemulsion containing 2% brine at an S:C ratio of 1:1 from a suitable turbid zone has been examined to see the stability of the diesel-water microemulsion systems. Regression models have been proposed to understand the impact of various components of the microemulsion on their cloud point (CP) values. Conductivity of the microemulsions at various S:C ratio increases with the volume of brine having two cut points depicting the presence of three microheterogenous phases within the system, whereas turbidity shows a linear increase. Dye-probed investigation of water-rich and oil-rich zones of the microemulsions indicates the involvement of a dynamic mass transfer process within the various zones. The intensities of flames produced during burning of the microemulsions with various O:E:W weight percentages selected from the isotropic regions of the phase diagrams have been estimated using MATLAB image processing method and the impacts of various components on the fuel use of the microemulsions have been analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.