We have developed a carbon-based, fast-response potentiometric pH microsensor for use as a scanning electrochemical microscopy (SECM) chemical probe to quantitatively map the microbial metabolic exchange between two bacterial species, commensal Streptococcus gordonii and pathogenic Streptococcus mutans. The 25-μm diameter H+ ion-selective microelectrode or pH microprobe showed a Nernstian slope of 59 mV/pH and high selectivity against major ions such Na+, K+, Ca2+ and Mg2+. In addition, the unique conductive membrane composition aided us in performing an amperometric approach curve to position the probe and obtain a high-resolution pH map of the microenvironment produced by the lactate-producing S. mutans biofilm. The x-directional pH scan over S. mutans also showed the influence of the pH profile on the metabolic activity of another species, H2O2-producing S. gordonii. When these bacterial species were placed in close spatial proximity, we observed an initial increase in the local H2O2 concentration of approximately 12±5 μM above S. gordonii, followed by a gradual decrease in H2O2 concentration (>30 min) to almost zero as lactate was produced, and a subsequent decrease in pH with a more pronounced metabolic output of S. mutans. These results were supported by gene expression and confocal fluorescence microscopic studies. Our findings illustrate that H2O2-producing S. gordonii is dominant while the buffering capacity of saliva is valid (~pH 6.0) but is gradually taken over by S. mutans as the latter species slowly starts decreasing the local pH to 5.0 or less by producing lactic acid. Our observations demonstrate the unique capability of our SECM chemical probes for studying real-time metabolic interactions between two bacterial species, which would not otherwise be achievable in traditional assays.
We designed poly(aryl ether) dendron based transparent hydrogels containing glucose moiety, which undergoes in situ transition from nanofibers to spherical aggregates, upon pH variation. The process is reversible and the assembled structures have been characterized by DLS and SEM. More importantly, efficient dispersion of graphene oxide results in lower CGC (0.08 wt%) value and higher mechanical strength, compared to the native gel.
A glucose-modified dendritic hydrogel is used as a bioink for bacterial encapsulation. This biocompatible hydrogel is a potentially suitable alternative to conventional alginate hydrogel for bacterial encapsulation, as it readily forms gel in the presence of Na + or K + ions without any additional stimuli such as pH, temperature, sonication, or the presence of divalent metal ions. We created a bacterial microhabitat by adding the gelator to phosphate-buffered saline containing live bacteria at physiological pH and using an additive three-dimensional (3D) printing technique. The bacteria remained viable and metabolically active within the 3D printed bacterial microhabitat, as shown with confocal laser scanning microscopy and scanning electrochemical microscopy.
We have designed and synthesized a multifunctional dendritic molecular probe that selectively detects Cu2+ ions via potentiometric and fluorometric techniques with low detection limits (3.5 μM in potentiometry, 15 nM in fluorometry).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.