Adjunctive fenfluramine hydrochloride, classically described as acting pharmacologically through a serotonergic mechanism, has demonstrated a unique and robust clinical response profile with regard to its magnitude, consistency, and durability of effect on seizure activity in patients with pharmacoresistant Dravet syndrome. Recent findings also support long-term improvements in executive functions (behavior, emotion, cognition) in these patients. The observed clinical profile is inconsistent with serotonergic activity alone, as other serotonergic medications have not been demonstrated to have these clinical effects. This study investigated a potential role for σ 1 receptor activity in complementing fenfluramine's serotonergic pharmacology. Methods: Radioligand binding assays tested the affinity of fenfluramine for 47 receptors associated with seizures in the literature, including σ receptors. Cellular function assays tested fenfluramine and norfenfluramine (its major metabolite) activity at various receptors, including adrenergic, muscarinic, and serotonergic receptors. The σ 1 receptor activity was assessed by the mouse vas deferens isometric twitch and by an assay of dissociation of the σ 1 receptor from the endoplasmic reticulum stress protein binding immunoglobulin protein (BiP). In vivo mouse models assessed fenfluramine activity at σ 1 receptors in ameliorating dizocilpine-induced learning deficits in spatial and nonspatial memory tasks, alone or in combination with the reference σ 1 receptor agonist PRE-084. Results: Fenfluramine and norfenfluramine bound ≥30% to β 2 -adrenergic, muscarinic M 1 , serotonergic 5-HT 1A , and σ receptors, as well as sodium channels, with a K i between 266 nM (σ receptors) and 17.5 μM (β-adrenergic receptors). However, only σ 1 receptor isometric twitch assays showed a positive functional response, with weak stimulation by fenfluramine and inhibition by norfenfluramine. Fenfluramine, but not the 5-HT 2C agonist lorcaserin, showed a positive modulation of the PRE-084-induced dissociation of σ 1 protein from BiP. Fenfluramine also showed dose-dependent antiamnesic effects against dizocilpine-induced learning deficits in spontaneous alternation and passive avoidance responses, which are models of σ 1 activation. Moreover, low doses of fenfluramine synergistically potentiated the low-dose effect of PRE-084, confirming a positive modulatory effect at the σ 1 receptor. Finally, all in vivo effects were blocked by the σ 1 receptor antagonist NE-100. Significance: Fenfluramine demonstrated modulatory activity at σ 1 receptors in vitro and in vivo in addition to its known serotonergic activity. These studies identify a possible new σ 1 receptor mechanism underpinning fenfluramine's central nervous system effects, which may contribute to its antiseizure activity in Dravet syndrome and positive effects observed on executive functions in clinical studies.
Developmental and epileptic encephalopathies (DEEs) are complex conditions characterized primarily by seizures associated with neurodevelopmental and motor deficits. Recent evidence supports sigma-1 receptor modulation in both neuroprotection and antiseizure activity, suggesting that sigma-1 receptors may play a role in the pathogenesis of DEEs, and that targeting this receptor has the potential to positively impact both seizures and non-seizure outcomes in these disorders. Recent studies have demonstrated that the antiseizure medication fenfluramine, a serotonin-releasing drug that also acts as a positive modulator of sigma-1 receptors, reduces seizures and improves everyday executive functions (behavior, emotions, cognition) in patients with Dravet syndrome and Lennox-Gastaut syndrome. Here, we review the evidence for sigma-1 activity in reducing seizure frequency and promoting neuroprotection in the context of DEE pathophysiology and clinical presentation, using fenfluramine as a case example. Challenges and opportunities for future research include developing appropriate models for evaluating sigma-1 receptors in these syndromic epileptic conditions with multisystem involvement and complex clinical presentation.
Fenfluramine (FFA) has potent antiseizure activity in severe, pharmacoresistant childhood‐onset developmental and epileptic encephalopathies (e.g., Dravet syndrome). To assess risk of drug interaction affecting pharmacokinetics of FFA and its major metabolite, norfenfluramine (nFFA), we conducted in vitro metabolite characterization, reaction phenotyping, and drug transporter−mediated cellular uptake studies. FFA showed low in vitro clearance in human liver S9 fractions and in intestinal S9 fractions in all three species tested (t 1/2 > 120 min). Two metabolites (nFFA and an N‐oxide or a hydroxylamine) were detected in human liver microsomes versus six in dog and seven in rat liver microsomes; no metabolite was unique to humans. Selective CYP inhibitor studies showed FFA metabolism partially inhibited by quinidine (CYP2D6, 48%), phencyclidine (CYP2B6, 42%), and furafylline (CYP1A2, 32%) and, to a lesser extent (<15%), by tienilic acid (CYP2C9), esomeprazole (CYP2C19), and troleandomycin (CYP3A4/5). Incubation of nFFA with rCYP1A2, rCYP2B6, rCYP2C19, and rCYP2D6 resulted in 10%−20% metabolism and no clear inhibition of nFFA metabolism by any CYP‐selective inhibitor. Reaction phenotyping showed metabolism of FFA by recombinant human cytochrome P450 (rCYP) enzymes rCYP2B6 (10%–21% disappearance for 1 and 10 µM FFA, respectively), rCYP1A2 (22%−23%), rCYP2C19 (49%−50%), and rCYP2D6 (59%−97%). Neither FFA nor nFFA was a drug transporter substrate. Results show FFA metabolism to nFFA occurs through multiple pathways of elimination. FFA dose adjustments may be needed when administered with strong inhibitors or inducers of multiple enzymes involved in FFA metabolism (e.g., stiripentol).
Studies support the safety and efficacy of fenfluramine (FFA) as an antiseizure medication (ASM) in Dravet syndrome, Lennox‐Gastaut syndrome, or CDKL5 deficiency disorder, all pharmacoresistant developmental and epileptic encephalopathies. However, drug–drug interactions with FFA in multi‐ASM regimens have not been fully investigated. We characterized the perpetrator potential of FFA and its active metabolite, norfenfluramine (nFFA), in vitro by assessing cytochrome P450 (CYP450) inhibition in human liver microsomes, CYP450 induction in cultured human hepatocytes, and drug transporter inhibition potential in permeability or cellular uptake assays. Mean plasma unbound fraction was ~50% for both FFA and nFFA, with no apparent concentration dependence. FFA and nFFA were direct in vitro inhibitors of CYP2D6 (IC 50 , 4.7 and 16 µM, respectively) but did not substantially inhibit CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, or CYP3A4/5. No time‐ or metabolism‐dependent CYP450 inhibition occurred. FFA and nFFA did not induce CYP1A2; both induced CYP2B6 (up to 2.8‐fold and up to 2.0‐fold, respectively) and CYP3A4 (1.9‐ to 3.0‐fold and 3.6‐ to 4.8‐fold, respectively). Mechanistic static pharmacokinetic models predicted that neither CYP450 inhibition nor induction was likely to be clinically relevant at doses typically used for seizure reduction (ratio of area under curve [AUCR] for inhibition <1.25; AUCR for induction >0.8). Transporters OCT2 and MATE1 were inhibited by FFA (IC 50 , 19.8 and 9.0 μM) and nFFA (IC 50 , 5.2 and 4.6 μM) at concentrations higher than clinically achievable; remaining transporters were not inhibited. Results suggest that FFA and nFFA are unlikely drug–drug interaction perpetrators at clinically relevant doses of FFA (0.2−0.7 mg/kg/day).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.