The present work aimed to study the culturable diversity of psychrotolerant bacteria persistent in soil under overwintering conditions, evaluate their ability to sustain plant growth and alleviate chilling stress in tomato. Psychrotolerant bacteria were isolated from agricultural field soil samples colleced during winter and then used to study chilling stress alleviation in tomato plants (Solanum lycopersicum cv Mill). Selective isolation after enrichment at 5°C yielded 40 bacterial isolates. Phylogenetic studies indicated their distribution in genera Arthrobacter, Flavimonas, Flavobacterium, Massilia, Pedobacter and Pseudomonas. Strains OS211, OB146, OB155 and OS261 consistently improved germination and plant growth when a chilling stress of 15°C was imposed and therefore were selected for pot experiments. Tomato plants treated with the selected four isolates exhibited significant tolerance to chilling as observed through reduction in membrane damage and activation of antioxidant enzymes along with proline synthesis in the leaves when exposed to chilling temperature conditions (15°C). Psychrotolerant physiology of the isolated bacteria combined with their ability to improve germination, plant growth and induce antioxidant capacity in tomato plants can be employed to protect plants against chilling stress.
The potential of bacterial endophytes to improve symbiotic efficiency through synergistic interactions with rhizobia can help to improve nodulation and nitrogen fixation in legume plants. In the present study, we compared the effect of endophytic plant growth-promoting bacteria on nodulation and effective rhizobial symbiosis in soybean. Nodule endophyte Bacillus megaterium LNL6 isolated from root nodules of Lesperdeza sp. and plant endophyte Methylobacterium oryzae CBMB20 isolated from rice leaves were selected as endophytic co-inoculants. Treatment of Bradyrhizobium japonicum MN110 along with B. megaterium LNL6 and M. oryzae CBMB20 exhibited an increase in nodule number in pots at 35 days after sowing compared to single inoculation of MN110. Additionally, both the co-inoculation treatments showed significant increase in nodule activity which was measured in terms of nodule leghemoglobin content, nodulated root ARA and total plant nitrogen content compared to solitary inoculation of B. japonicum MN110. Though ACCD activity of the co-inoculated strains can be attributed to increase in nodule number, the observed increase in root nitrogenase activity and leghemoglobin content in the nodules is understood as due to plant growth promotion traits of the specific endophytic strains. High levels of IAA produced by B. megaterium LNL6 can be considered to have aided development of mature nodules which thereby improved the nodular nitrogen fixation. Thus, endophytic lifestyle combined with plant growth-promoting traits, such as IAA production, ACC deaminase, cellulase and nitrogenase activity by B. megaterium LNL6 and M. oryzae CBMB20, contributes to the improvement of overall symbiotic nitrogen fixation by the plant.Keywords Co-inoculation Á Nodule efficiency Á Methylobacterium Á Bacillus Á Root nodule nitrogenase activity Abbreviations IAA Indole-3-acetic acid ACC 1-Aminocyclopropane-1-carboxylate DAS Days after sowing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.