This work reports the first synthesis of MAPbBr3 perovskite nanocrystals (PNCs) using amino acids as the ligand with excellent optical properties. A variety of amino acids are used to optimize the luminescence properties. A mechanochemical approach has taken lead over conventional colloidal chemistry during synthesis. All morphological and optical studies are performed to characterize the synthesized perovskite nanoparticles. Later, stability studies are investigated through thermogravimetric analysis, temperature‐dependent photoluminescence, time‐dependent X‐ray diffraction, as well as X‐ray photoelectron spectroscopy. In an application, interestingly, these perovskites show high luminescence upon scratching on flexible conducting plates and on plain paper surface. These results suggest that the amino acid–ligated perovskite nanocrystals can be potential materials for optoelectronic application including light‐emitting diodes and imaging.
We demonstrated a facile method to grow organometal halide perovskite quantum dots in a solid silica matrix. The photoluminescence measurements of the MAPbBr3 quantum dots and corresponding large particles show a shift from blue to green emission with morphological changes. The nanocrystals impregnated on the silica matrix improve the stability and may be useful as functional materials in all solid state light emitting devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.