Purpose: Identification of individual cow breeds may offer various farming opportunities for disease detection, disease prevention and treatment, fertility and feeding, and welfare monitoring. However, due to the large population of cows with hundreds of breeds and almost identical visible appearance, their exact identification and detection become a tedious task. Therefore, the automatic detection of cow breeds would benefit the dairy industry. This study presents a computer-vision-based approach for identifying the breed of individual cattle. Methods: In this study, eight breeds of cows are considered to verify the classification process: Afrikaner, Brown Swiss, Gyr, Holstein Friesian, Limousin, Marchigiana, White Park, and Simmental cattle. A custom dataset is developed using web-mining techniques, comprising 1835 images grouped into 238, 223, 220, 212, 253, 185, 257, and 247 images for individual breeds. YOLOv4, a deep learning approach, is employed for breed classification and localization. The performance of the YOLOv4 algorithm is evaluated by training the model on different sets of training parameters. Results: Comprehensive analysis of the experimental results reveal that the proposed approach achieves an accuracy of 81.07%, with maximum kappa of 0.78 obtained at an image size of 608 × 608 and an intersection over union (IoU) threshold of 0.75 on the test dataset. Conclusions: The model performed better with YOLOv4 relative to other compared models. This places the proposed model among the top-ranked cow breed detection models. For future recommendations, it would be beneficial to incorporate simple tracking techniques between video frames to check the efficiency of this work.