Functional composite materials that can change their spectral properties in response to external stimuli have a plethora of applications in fields ranging from sensors to biomedical imaging. One of the most promising types of materials used to design spectrally active composites are fluorescent single-walled carbon nanotubes (SWCNTs), noncovalently functionalized by synthetic amphiphilic polymers. These coated SWCNTs can exhibit modulations in their fluorescence spectra in response to interactions with target analytes. Hence, identifying new amphiphiles with interchangeable building blocks that can form individual coronae around the SWCNTs and can be tailored for a specific application is of great interest. This study presents highly modular amphiphilic polymer-dendron hybrids, composed of hydrophobic dendrons and hydrophilic polyethylene glycol (PEG) that can be synthesized with a high degree of structural freedom, for suspending SWCNTs in aqueous solution. Taking advantage of the high molecular precision of these PEG-dendrons, we show that precise differences in the chemical structure of the hydrophobic end groups of the dendrons can be used to control the interactions of the amphiphiles with the SWCNT surface. These interactions can be directly related to differences in the intrinsic near-infrared fluorescence emission of the various chiralities in a SWCNT sample. Utilizing the susceptibility of the PEG-dendrons toward enzymatic degradation, we demonstrate the ability to monitor enzymatic activity through changes in the SWCNT fluorescent signal. These findings pave the way for a rational design of functional SWCNTs, which can be used for optical sensing of enzymatic activity in the near-infrared spectral range.
Fracture formation due to drying is a common process in a range of systems, from mud cracks to thin polymeric films. Design and control of the fracturing process can be used as a tool for directing the fractures into predefined paths, leading to patterning and controlled fragmentation. In this work, we report the spontaneous periodic fragmentation of polymeric microfibers upon drying. The microfibers are fabricated via electrospinning of amphiphilic triblock copolymers over a glass substrate, and throughout their drying, highly periodic and sharp transverse cracking occurs along the fiber, resulting in the production of anisotropic microparticles (MPs) with a remarkably narrow size distribution. The average length of the MPs depends on the fiber's diameter; hence, by tuning the diameter of the fibers, size control over the MPs is achieved. X-ray scattering measurements reveal the formation of a lamellar arrangement of the copolymers along the fiber, providing a molecular insight into the formation of sharp transverse fractures. Adjusting the lipophilicity of the two terminal hydrophobic dendritic blocks of the triblock copolymers allows tuning the solubility of the obtained MPs in water and the release rate of hydrophobic cargo, opening a new route for the fabrication of anisotropic MPs for controlled release applications.
Di-and triblock amphiphiles can form different mesophases ranging from micelles to hydrogels depending on their chemical structures, hydrophilic to hydrophobic ratios, and their ratio in the mixture. In addition, their different architectures dictate their exchange rate between the assembled and unimer states and consequently affect their responsiveness toward enzymatic degradation. Here we report the utilization of the different reactivities of diand triblock amphiphiles, having exactly the same hydrophilic to lipophilic balance, toward enzymatic degradation as a tool for programming formulations to undergo sequential enzymatically induced transitions from (i) micelles to (ii) hydrogel and finally to (iii) dissolved polymers. We show that the rate of transition between the mesophases can be programmed by changing the ratio of the amphiphiles in the formulation, and that the hydrogels can maintain encapsulated cargo, which was loaded into the micelles. The reported results demonstrate the ability of molecular architecture to serve as a tool for programming smart formulations to adopt different structures and functions.
Di- and tri-block amphiphiles can form different mesophases ranging from micelles to hydrogels depending on their chemical structures, hydrophilic to hydrophobic ratios, and their ratio in the mixture. In addition, their different architectures dictate their exchange rate between the assembled and unimer states, and consequently affect their responsiveness towards enzymatic degradation. Here we report the utilization of the different reactivities of di- and tri-block amphiphiles towards enzymatic degradation as a tool for programming formulations to undergo three sequential enzymatically induced transitions from: (i) micelles to (ii) hydrogel and finally to (iii) dissolved polymers. We show that the rate of transition between the mesophases can be programmed by changing the ratio of the amphiphiles in the formulation, and that the hydrogels can maintain encapsulated cargo, which was loaded into the micelles. The reported results demonstrate the ability of molecular architecture to serve as a tool for programming smart formulations to adopt different structures and functions.
Single-walled carbon nanotubes (SWCNTs), non-covalently functionalized by synthetic polymers, find widespread applications including sensing and imaging. Identifying new amphiphiles with interchangeable building blocks that can form unique coronae around the SWCNT, customized for a specific application, is thus of great interest. We present polymer-dendron hybrids, composed of hydrophobic dendrons and hydrophilic polyethylene glycol (PEG), as amphiphilic macromolecules with high degree of structural freedom, for suspending SWCNTs in aqeous solution. Based on a set of four PEG-dendrons differing in their dendritic end-groups, we show thst differences in the chemical structure of the hydrophobic end-groups control the interactions of the PEG-dendrons with the SWCNT-surface. These interactions led to differences in the intrinsic near-infrared fluorescence emission of the SWCNTs and affected the PEG-dendron susceptibility to enzymatic degradation, which was monitored by the SWCNT fluorescent signal. Our findings open new avenues for rational design of SWCNT functionalization, and optical sensing of enzymatic activity<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.