Wine research has as its core components the disciplines of sensory analysis, viticulture, and oenology. Wine quality is an important concept for each of these disciplines, as well as for both wine producers and consumers. Any technique that could help producers to understand the nature of wine quality and how consumers perceive it, will help them to design even more effective marketing strategies. However, predicting a wine’s quality presents wine science modelling with a real challenge. We used sample data from Pinot noir wines from different regions of New Zealand to develop a mathematical model that can predict wine quality, and applied dimensional analysis with the Buckingham Pi theorem to determine the mathematical relationship among different chemical and physiochemical compounds. This mathematical model used perceived wine quality indices investigated by wine experts and industry professionals. Afterwards, machine learning algorithms are applied to validate the relevant sensory and chemical concepts. Judgments of wine intrinsic attributes, including overall quality, were made by wine professionals to two sets of 18 Pinot noir wines from New Zealand. This study develops a conceptual and mathematical framework to predict wine quality, and then validated these using a large dataset with machine learning approaches. It is worth noting that the predicted wine quality indices are in good agreement with the wine experts’ perceived quality ratings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.