The relative aromaticity of pyrrole, furan, thiophene, and their aza-derivatives has been examined using TRE (topological resonance energy), MRE (magnetic resonance energy), ring current (RC), and ring current diamagnetic susceptibility (χG) methods. The results obtained were compared with results obtained by others who used the energetic method ASE (aromatic stabilization energy), the geometric method HOMA (harmonic oscillator model of aromaticity), and the magnetic method NICS(1) (nucleus-independent chemical shift). The impact of nitrogen atoms on the aromaticity of the aza-derivatives of pyrrole, furan, and thiophene is discussed. An excellent correlation was found between the energetic (TRE, MRE) and magnetic (RC and χG) criteria of aromaticity for all compounds. It was expected that inclusion of a heteroatom would decrease the aromaticity relative to the cyclopentadienyl anion. Our results show that the type of the first heteroatom, which donates two electrons to the system, as well as the number of nitrogen atoms and their positions in the molecule have a strong effect on aromaticity. In general, aromaticity is enhanced when the nitrogen atom is adjacent to the first heteroatom. The magnitude of aromaticity is related closely with the uniformity of distribution of π-electrons in the molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.