Coronaviruses are a large family of viruses that cause different symptoms, from mild cold to severe respiratory distress, and they can be seen in different types of animals such as camels, cattle, cats and bats. Novel coronavirus called COVID-19 is a newly emerged virus that appeared in many countries of the world, but the actual source of the virus is not yet known. The outbreak has caused pandemic with 26,622,706 confirmed infections and 874,708 reported deaths worldwide till August 31, 2020, with 17,717,911 recovered cases. Currently, there exist no vaccines officially approved for the prevention or management of the disease, but alternative drugs meant for HIV, HBV, malaria and some other flus are used to treat this virus. In the present paper, a fractional-order epidemic model with two different operators called the classical Caputo operator and the Atangana–Baleanu–Caputo operator for the transmission of COVID-19 epidemic is proposed and analyzed. The reproduction number is obtained for the prediction and persistence of the disease. The dynamic behavior of the equilibria is studied by using fractional Routh–Hurwitz stability criterion and fractional La Salle invariant principle. Special attention is given to the global dynamics of the equilibria. Moreover, the fitting of parameters through least squares curve fitting technique is performed, and the average absolute relative error between COVID-19 actual cases and the model’s solution for the infectious class is tried to be reduced and the best fitted values of the relevant parameters are achieved. The numerical solution of the proposed COVID-19 fractional-order model under the Caputo operator is obtained by using generalized Adams–Bashforth–Moulton method, whereas for the Atangana–Baleanu–Caputo operator, we have used a new numerical scheme. Also, the treatment compartment is included in the population which determines the impact of alternative drugs applied for treating the infected individuals. Furthermore, numerical simulations of the model and their graphical presentations are performed to visualize the effectiveness of our theoretical results and to monitor the effect of arbitrary-order derivative.
In this paper, an investigation and analysis of a nonlinear fractional-order SIR epidemic model with Crowley–Martin type functional response and Holling type-II treatment rate are established along the memory. The existence and stability of the equilibrium points are investigated. The sufficient conditions for the persistence of the disease are provided. First, a threshold value, [Formula: see text], is obtained which determines the stability of equilibria, then model equilibria are determined and their stability analysis is considered by using fractional Routh-Hurwitz stability criterion and fractional La-Salle invariant principle. The fractional derivative is taken in Caputo sense and the numerical solution of the model is obtained by L1 scheme which involves the memory trace that can capture and integrate all past activity. Meanwhile, by using Lyapunov functional approach, the global dynamics of the endemic equilibrium point is discussed. Further, some numerical simulations are performed to illustrate the effectiveness of the theoretical results obtained. The outcome of the study reveals that the applied L1 scheme is computationally very strong and effective to analyze fractional-order differential equations arising in disease dynamics. The results show that order of the fractional derivative has a significant effect on the dynamic process. Also, from the results, it is obvious that the memory effect is zero for [Formula: see text]. When the fractional-order [Formula: see text] is decreased from [Formula: see text] the memory trace nonlinearly increases from [Formula: see text], and its dynamics strongly depends on time. The memory effect points out the difference between the derivatives of the fractional-order and integer order.
COVID-19 disease, a deadly pandemic ravaging virtually throughout the world today, is undoubtedly a great calamity to human existence. There exists no complete curative medicine or successful vaccines that could be used for the complete control of this deadly pandemic at the moment. Consequently, the study of the trends of this pandemic is critical and of great importance for disease control and risk management. Computation of the basic reproduction number by means of mathematical modeling can be helpful in estimating the potential and severity of an outbreak and providing insightful information which is useful to identify disease intensity and necessary interventions. Considering the enormity of the challenge and the burdens which the spread of this COVID-19 disease placed on healthcare system, the present paper attempts to study the pattern and the trend of spread of this disease and prescribes a mathematical model which governs COVID-19 pandemic using Caputo type derivative. Local stability of the equilibria is also discussed in the paper. Some numerical simulations are given to illustrate the analytical results. The obtained results shows that applied numerical technique is computationally strong for modeling COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.