Cloud detection in satellite images is an important first-step in many remote sensing applications. This problem is more challenging when only a limited number of spectral bands are available. To address this problem, a deep learning-based algorithm is proposed in this paper. This algorithm consists of a Fully Convolutional Network (FCN) that is trained by multiple patches of Landsat 8 images. This network, which is called Cloud-Net, is capable of capturing global and local cloud features in an image using its convolutional blocks. Since the proposed method is an end-to-end solution no complicated pre-processing step is required. Our experimental results prove that the proposed method outperforms the state-ofthe-art method over a benchmark dataset by 8.7% in Jaccard Index.
This paper presents an automatic point matching algorithm for establishing accurate match correspondences in two or more images. The proposed algorithm utilizes a group of feature points to explore their geometrical relationship in a graph arrangement. The algorithm starts with a set of matches (including outliers) between the two images. A set of nondirectional graphs is then generated for each feature and its K nearest matches (chosen from the initial set). Using the angular distances between edges that connect a feature point to its K nearest neighbors in the graph, the algorithm finds a graph in the second image that is similar to the first graph. In the case of a graph including outliers, the algorithm removes such outliers (one by one, according to their strength) from the graph and re-evaluates the angles until the two graphs are matched or discarded. This is a simple intuitive and robust algorithm that is inspired by a previous work. Experimental results demonstrate the superior performance of this algorithm under various conditions, such as rigid and nonrigid transformations, ambiguity due to partial occlusions or match correspondence multiplicity, scale, and larger view variation.
This paper presents a deep-learning based framework for addressing the problem of accurate cloud detection in remote sensing images. This framework benefits from a Fully Convolutional Neural Network (FCN), which is capable of pixellevel labeling of cloud regions in a Landsat 8 image. Also, a gradient-based identification approach is proposed to identify and exclude regions of snow/ice in the ground truths of the training set. We show that using the hybrid of the two methods (threshold-based and deep-learning) improves the performance of the cloud identification process without the need to manually correct automatically generated ground truths. In average the Jaccard index and recall measure are improved by 4.36% and 3.62%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.