Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability.
Polymer nanocomposite materials of higher thermal and electrical transport properties are important to nanotechnology applications such as thermal management, packaging, labelling and the textile industry. In this work, thermal and electrical conductivities in nanocomposites of multiwalled carbon nanotubes (MWCNT) and isotactic polypropylene (iPP) are investigated in terms of MWCNT loading, temperature dependence, and anisotropy caused by melt shearing. IPP/MWCNT nanocomposites show a significant increase in thermal and electrical conductivity with increasing MWCNT loading, reaching 17.5 W/m K and 10−6 S/m, respectively, at a MWCNT 5.0 weight percentage at 40°C. The increase in MWCNT/iPP is more than would be expected based on the additivity rule, and suggests a reduction of the interfacial thermal electrical resistance at nanotube-nanotube junctions and the nanotube-matrix interface. The anisotropy in both conductivities was observed to be larger at low temperature and to disappear at higher temperature due to isotropic electrical and thermal contact in both directions. Oriented MWCNT/iPP nanocomposites exhibit higher electrical and thermal conductivities, attributed primarily by orientation of nanotubes due to the shearing fabrication process.
Carbon nanotubes are considered to be ideal candidates for improving the mechanical properties of polymer nanocomposite scaffolds due to their higher surface area, mechanical properties of three-dimensional isotropic structure, and physical properties. In this study, we showed the improved mechanical properties prepared by backfilling of preformed hydrogels and aerogels of individually dispersed multiwalled carbon nanotubes (MWCNTs-Baytubes) and thermoplastic polyurethane. Here, we used the solution-based fabrication method to prepare the composite scaffold and observed an improvement in tensile modulus about 200-fold over that of pristine polymer at 19 wt% MWCNT loading. Further, we tested the thermal properties of composite scaffolds and observed that the nanotube networks suppress the mobility of polymer chains, the composite scaffold samples were thermally stable well above their decomposition temperatures that extend the mechanical integrity of a polymer well above its polymer melting point. The improved mechanical properties of the composite scaffold might be useful in smart material industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.