The Cancer Genetic Markers of Susceptibility (CGEMS) initiative has conducted a three-stage genome-wide association study (GWAS) of breast cancer in 9,770 cases and 10,799 controls. In Stage 1, we genotyped 528,173 single nucleotide polymorphisms (SNPs) in 1,145 cases of invasive breast cancer among postmenopausal white women, and 1,142 controls; in Stage 2, 24,909 SNPs with low p values observed in Stage 1 were analyzed in 4,547 cases and 4,434 controls. In Stage 3 we investigated 21 loci in 4,078 cases and 5,223 controls with low p values from Stage 1 and 2 combined. Two novel loci achieved genome-wide significance. A pericentromeric SNP on chromosome 1p11.2, rs11249433, (p=6.74 × 10-10 adjusted genotype test with 2 degrees of freedom) resides in a large block of linkage disequilibrium neighboring NOTCH2 and FCGR1B and is predominantly associated with estrogen receptor-positive breast cancer. A second SNP, rs999737 on chromosome 14q24.1 (p=1.74 × 10−7), localizes to RAD51L1, a gene in the homologous recombination DNA repair pathway, a prior candidate pathway for breast cancer susceptibility. We confirmed previously reported markers on chromosome 2q35, 5q11.2, 5p12, 8q24, 10q26, and 16q12.1. Our results underscore the importance of large-scale replication in the identification of low penetrance breast cancer alleles.
Genome-wide association studies (GWAS) have identified seven breast cancer susceptibility loci, but these explain only a small fraction of the familial risk of the disease. Five of these loci were identified through a two-stage GWAS involving 390 familial cases and 364 controls in the first stage, and 3,990 cases and 3,916 controls in the second stage. To identify additional loci, we tested over 800 promising associations from this GWAS in a further two stages involving 37,012 cases and 40,069 controls from 33 studies in the CGEMS collaboration and Breast Cancer Association Consortium. We found strong evidence for additional susceptibility loci on 3p (rs4973768: per-allele OR = 1.11, 95% CI = 1.08-1.13, P = 4.1 × 10-23) and 17q (rs6504950: per-allele OR = 0.95, 95% CI = 0.92-0.97, P = 1.4 × 10 -8). Potential causative genes include SLC4A7 and NEK10 on 3p and COX11 on 17q. © 2009 Nature America, Inc. All rights reserved
Previous studies have indicated that thyroid cancer risk after a first childhood malignancy is curvilinear with radiation dose, increasing at low to moderate doses and decreasing at high doses. Understanding factors that modify the radiation dose response over the entire therapeutic dose range is challenging and requires large numbers of subjects. We quantified the long-term risk of thyroid cancer associated with radiation treatment among 12,547 5-year survivors of a childhood cancer (leukemia, Hodgkin lymphoma and non-Hodgkin lymphoma, central nervous system cancer, soft tissue sarcoma, kidney cancer, bone cancer, neuroblastoma) diagnosed between 1970 and 1986 in the Childhood Cancer Survivor Study using the most current cohort follow-up to 2005. There were 119 subsequent pathologically confirmed thyroid cancer cases, and individual radiation doses to the thyroid gland were estimated for the entire cohort. This cohort study builds on the previous case-control study in this population (69 thyroid cancer cases with follow-up to 2000) by allowing the evaluation of both relative and absolute risks. Poisson regression analyses were used to calculate standardized incidence ratios (SIR), excess relative risks (ERR) and excess absolute risks (EAR) of thyroid cancer associated with radiation dose. Other factors such as sex, type of first cancer, attained age, age at exposure to radiation, time since exposure to radiation, and chemotherapy (yes/no) were assessed for their effect on the linear and exponential quadratic terms describing the dose-response relationship. Similar to the previous analysis, thyroid cancer risk increased linearly with radiation dose up to approximately 20 Gy, where the relative risk peaked at 14.6-fold (95% CI, 6.8-31.5). At thyroid radiation doses >20 Gy, a downturn in the dose-response relationship was observed. The ERR model that best fit the data was linear-exponential quadratic. We found that age at exposure modified the ERR linear dose term (higher radiation risk with younger age) (P < 0.001) and that sex (higher radiation risk among females) (P = 0.008) and time since exposure (higher radiation risk with longer time) (P < 0.001) modified the EAR linear dose term. None of these factors modified the exponential quadratic (high dose) term. Sex, age at exposure and time since exposure were found to be significant modifiers of the radiation-related risk of thyroid cancer and as such are important factors to account for in clinical follow-up and thyroid cancer risk estimation among childhood cancer survivors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.