The absorption of protein and formation of biofilms on the surface of ophthalmic lenses is one of the factors that destroy their useful performance by causing severe visual impairment, inflammation, dryness and ultimate eye discomfort. Therefore, eye lenses need to be resilient to protein absorption, which is one of the opacity factors in minimizing protein absorption on the lenses. The purpose of this study was to investigate and reduce sediment biotransformation on the surface of the semi-hardened lens based on acrylate by bulk-free radical polymerization method. In this respect, the effect of poly(ethylene glycol) diacrylate (PEGDA) with two different molecular weights of 200 and 600 g/mol on the surface roughness, protein absorption, and hydrophilicity of the lenses were studied. The surface hardness of the lenses, on shore D scale, was measured using a durometer hardness test. The presence of higher molecular weight of PEGDA hydrophilic polymeric monomers reduced the hardness of the lenses. The effect of introducing PEGDA, with two molecular weights, into lens fabrication formulations was studied with respect to their water content parameters and hydrophilicity. The presence of a crosslinker such as poly(ethylene glycol) diacrylates, at two different molecular weights, increased the water content and hydrophilicity of the produced lenses. Surface roughness is associated with the formation of bio-film and accumulation of microorganisms on the surface. Due to the roughness of the lens surface developed in this research, the lenses containing PEGDA 600 exhibited less roughness compared to that of PEGDA 200, which could also affect the absorption of protein. Therefore, according to the results of protein absorption test, the PEGDA 600 lenses showed lower protein absorption, which could be due to their high degree of water absorption and hydrophilicity.
Three polyurethane formulations were prepared on the basis of siloxane; two formulations contained 1% and 3% of a hydroxyl functionalized polyhedral oligomeric silsesquioxane [POSS (ROH)2] nano-particles (as a co-chain extender) and one was without nano-particle. Structures of the polyurethanes were characterized by FTIR and SEM. The effect of POSS nano-particles on properties of the synthesized PUs was examined for vascular applications by tensile test, contact angle, SEM, AFM and endothelial cells viability evaluation. Properties of the polyurethane with 1% POSS were compared with those of PU without POSS and the results showed 66% increase in the elongation-at-break, 53% increase in tensile strength and 33% increase in modulus, 9.45% increase in contact angle, 76.7% reduction in surface roughness and 9.46% increase in cell viability. It was also shown that a polyurethane containing 1% of POSS nano-particles in its structure developed the highest hydrophobicity, which resulted in its lowest potential for thrombosis.Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.