Oxidative stress in the male germ line is thought to affect male fertility and impact upon normal embryonic development. Accordingly, fertility specialists are actively exploring the diagnosis of such stress in spermatozoa and evaluating the possible use of antioxidants to ameliorate this condition. In this review, evidence for the presence of oxidative stress in human spermatozoa, the origins of this phenomenon, its clinical significance in the aetiology of male infertility and recent advances in methods for its diagnosis and treatment are re-examined. Moreover, an extensive review of the results presented in published clinical studies has been conducted to evaluate the overall impact of oral antioxidants on measures of sperm oxidative stress and DNA damage. Administration of antioxidants to infertile men has been assessed in numerous clinical studies with at least 20 reports highlighting its effect on measures of oxidative stress in human spermatozoa. A qualitative but detailed review of the results revealed that 19 of the 20 studies conclusively showed a significant reduction relating to some measure of oxidative stress in these cells. Strong evidence also supports improved motility, particularly in asthenospermic patients. However, of these studies, only 10 reported pregnancy-related outcomes, with 6 reporting positive associations. Adequately powered, placebo-controlled comprehensive clinical trials are now required to establish a clear role for antioxidants in the prevention of oxidative stress in the male germ line, such that the clinical utility of this form of therapy becomes established once and for all.
Spermatozoa are highly vulnerable to oxidative attack because they lack significant antioxidant protection due to the limited volume and restricted distribution of cytoplasmic space in which to house an appropriate armoury of defensive enzymes. In particular, sperm membrane lipids are susceptible to oxidative stress because they abound in significant amounts of polyunsaturated fatty acids. Susceptibility to oxidative attack is further exacerbated by the fact that these cells actively generate reactive oxygen species (ROS) in order to drive the increase in tyrosine phosphorylation associated with sperm capacitation. However, this positive role for ROS is reversed when spermatozoa are stressed. Under these conditions, they default to an intrinsic apoptotic pathway characterised by mitochondrial ROS generation, loss of mitochondrial membrane potential, caspase activation, phosphatidylserine exposure and oxidative DNA damage. In responding to oxidative stress, spermatozoa only possess the first enzyme in the base excision repair pathway, 8-oxoguanine DNA glycosylase. This enzyme catalyses the formation of abasic sites, thereby destabilising the DNA backbone and generating strand breaks. Because oxidative damage to sperm DNA is associated with both miscarriage and developmental abnormalities in the offspring, strategies for the amelioration of such stress, including the development of effective antioxidant formulations, are becoming increasingly urgent.
Lewis, S.E.M. et al. (2013). The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Astract:Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. IntroductionMale factor infertility is implicated in more than 40% of couples presenting for assisted reproduction treatment. Conventional semen analysis continues to be the only routine test to diagnose this condition even though it is known that such descriptive assessments cannot discriminate between the spermatozoa of fertile and infertile men (Guzick et al., 2001). The shifting values for normality (all 'normal' values now lower) in the fifth edition of the WHO manual (World Health Organization, 2010) compared with the previous WHO editions may result in even less men being classified as infertile (Murray et al., 2012).
Oxidative stress is known to compromise human sperm function and to activate the intrinsic apoptotic cascade in these cells. One of the key features of oxidatively stressed spermatozoa is the induction of a lipid peroxidation process that results in the formation of aldehydes potentially capable of disrupting sperm function through the formation of adducts with DNA and key proteins. In this study, we have examined the impact of a range of small molecular mass aldehydes generated as a consequence of lipid peroxidation on human sperm function and also compared the two most commonly formed compounds, 4-hydroxynonenal (4HNE) and malondialdehyde (MDA), for their relative ability to reflect a state of oxidative stress in these cells. Dramatic differences in the bioactivity of individual aldehydes were observed, that generally correlated with the second order rate constants describing their interaction with the model nucleophile, glutathione. Our results demonstrate that acrolein and 4HNE were the most reactive lipid aldehydes, inhibiting sperm motility while augmenting reactive oxygen species production, lipid peroxidation, oxidative DNA damage and caspase activation, in a dose-dependent manner (P < 0.001). In contrast, a variety of saturated aldehydes and the well-known marker of oxidative stress, MDA, were without effect on this cell type. While MDA was not cytotoxic per se, its generation did reflect the induction of oxidative stress in vivo and in vitro in a manner that was highly correlated with the bioactive lipid aldehyde, 4HNE. Despite such overall correlations, individual patient samples were observed in which either MDA or 4HNE predominated. Given the relative cytotoxicity of 4HNE, we propose that this aldehyde should be the preferred criterion for diagnosing oxidative stress in the male germ line.
We studied the interactions of strychnine, brucine, and three of the N-substituted analogues of brucine with [3 H]N-methylscopolamine (NMS) and unlabeled acetylcholine at m1-m5 muscarinic receptors using equilibrium and nonequilibrium radioligand binding studies. The results were consistent with a ternary allosteric model in which both the primary and allosteric ligands bind simultaneously to the receptor and modify the affinities of each other. The compounds had K d values in the submillimolar range, inhibited [ 3 H]NMS dissociation, and showed various patterns of positive, neutral, and negative cooperativity with [ 3 H]NMS and acetylcholine, but there was no predictive relationship between the effects. Acetylcholine affinity was increased ϳ2-fold by brucine at m1 receptors, ϳ3-fold by Nchloromethyl brucine at m3 receptors, and ϳ1.5-fold by brucine-N-oxide at m4 receptors. The existence of neutral cooperativity, in which the compound bound to the receptor but did not modify the affinity of acetylcholine, provides the opportunity for a novel form of drug selectivity that we refer to as absolute subtype selectivity: an agent showing positive or negative cooperativity with the endogenous ligand at one receptor subtype and neutral cooperativity at the other subtypes would exert functional effects at only the one subtype, regardless of the concentration of agent or its affinities for the subtypes. Our results demonstrate the potential for developing allosteric enhancers of acetylcholine affinity at individual subtypes of muscarinic receptor and suggest that minor modification of a compound showing positive, neutral, or low negative cooperativity with acetylcholine may yield compounds with various patterns of cooperativity across the receptor subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.