The fabrication of nanocomposites has played role to the development of the nanotechnology and the technology of advanced composite materials. Thermoset polymers are used in engineering applications widely. Their mechanical properties can be change with adding particles. The mechanism of toughening polymers has been suggested recently by reinforcing well dispersed particles to the plain polymer. Nano-silica particles were added to thermoset polymer of polyester to evaluate their influence on the mechanical properties of the toughened polymer using both experimental and numerical methods. The Representative Volume Element (RVE) approach, which employs finite element models, has been developed to achieve that aim numerically for various types of nano-particle reinforcement ratios. In each case, the stiffness has been calculated with using the equivalent homogeneous material concept. Experimentally, toughened thermoset polymers of polyester reinforced with nano-silica were prepared with different particle content ratio. Several tests were conducted on the nanocomposite, and it was observed increasing nano-silica ratio caused increase in Young’s modulus and decrease in ductility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.