Programme Hospitalier Recherche Clinique, Institut Pasteur, Inserm, French Public Health Agency.
Infertility is constantly increasing in Canada, where 16% of Canadian couples are experiencing difficulty conceiving. It is thought that infertility can emanate from the dysregulated communication between the embryo and the maternal endometrium. In order to allow for this window of implantation to be open at the right moment, endometrial stromal cells proliferate and differentiate by a mechanism called decidualization. Intracellular and molecular mechanisms involved in the regulation of apoptosis and cell proliferation during decidualization of the endometrium are yet to be fully understood. It has been well demonstrated previously that Akt is importantly involved in cell survival and glycogen synthesis. Akt1, Akt2 and Akt3 isoforms have distinct physiological roles; this could also be the case during decidualization and pregnancy. The aim of this study is to investigate the regulation of PI3K/Akt pathway during the decidualization process of endometrial stromal cells. Expression of Akt isoforms, Akt activity (phospho-Akt), pIκB and substrates of Akt during decidualization were measured. To our knowledge, these results are the first to suggest a decrease in levels of Akt isoforms as well as a downregulation of Akt activity in the process of decidualization of human endometrial stromal cells. We also uncovered that decidualization induced nuclear localization of p65 through the phosphorylation of IκB, its inhibitory subunit; however, Par-4, a recently uncovered regulator of cell differentiation, was displaced from the nucleus upon decidualization. Our results also suggest that HIESC cells exhibit decreased motility during decidualization and that PI3K pathway inhibition could be involved in this process. Finally, we demonstrate that specific Akt isoforms present unique effects on the successful induction of decidualization. Further analyses will involve investigations to understand the precise signaling mechanisms by which this pathway is regulated.
We recently reported the caspase3-dependent cleavage of Par-4 resulting in the accumulation of a 25kDa cleaved-Par-4 (cl-Par-4) fragment and we investigated in the present study the mechanisms regulating this fragment using cl-Par-4-expressing stable clones derived from ovarian and endometrial cancer cell lines.Cl-Par-4 protein was weakly express in all stable clones despite constitutive expression. However, upon cisplatin treatment, cl-Par-4 levels increased up to 50-fold relative to baseline conditions. Treatment of stable clones with proteasome and translation inhibitors revealed that cisplatin exposure might in fact protect cl-Par-4 from proteasome-dependent degradation. PI3K and MAPK pathways were also implicated as evidenced by an increase of cl-Par-4 in the presence of PI3K inhibitors and a decrease using MAPK inhibitors. Finally using bioinformatics resources, we found diverse datasets showing similar results to those we observed with the proteasome and cl-Par-4 further supporting our data.These new findings add to the complex mechanisms regulating Par-4 expression and activity, and justify further studies addressing the biological significance of this phenomenon in gynaecological cancer cells.
The PI3K/Akt signaling pathway, the most frequently altered signaling system in human cancer, is a crucial inducer of dysregulated proliferation and neoplastic processes; however, few therapeutic strategies using PI3K/Akt inhibitors singly have been shown to be effective. The purpose of this paper was to underline the potential benefit of pharmacological modulation of the PI3K/Akt pathway when combined with specific chemotherapeutic regimens. We have studied the ability of NVP‐BEZ235 (PI3K/mTOR inhibitor) and AZD5363 (Akt inhibitor) in the sensitization of cancer cells to cisplatin and doxorubicin. Our results show that NVP‐BEZ235 sensitizes cells preferentially to cisplatin while AZD5363 sensitizes cells to doxorubicin. At equal concentrations (5 μm), both inhibitors reduce ribosomal protein S6 phosphorylation, but AZD5363 is more effective in reducing GSK3β phosphorylation as well as S6 phosphorylation. Additionally, AZD5363 is capable of inducing FOXO1 and p53 nuclear localization and reduces BAD phosphorylation, which is generally increased by cisplatin and doxorubicin. Finally, the combination of AZD5363 and doxorubicin induces apoptosis in cells and robustly reduces cell ability to clonally replicate, which underlines a potential cooperative effect of the studied compounds.
BackgroundCRM1 enrichment has been shown to be indicative of invasive as well as chemoresistant tumors. On the other hand, TRAIL, a powerful and specific anti-tumoral agent, has yet to be used effectively to treat gynecological tumors in patients. In the present study, we examined if CRM1, a nuclear exporter capable of mediating protein transport, could be a relevant target to restore chemosensitivity in chemoresistant cells. We thus explored the hypothesis that CRM1-driven nuclear exclusion of tumor suppressors could lead to chemoresistance and that CRM1 inhibitors could present a novel therapeutic approach, allowing sensitization to chemotherapeutic agents.MethodsOvarian cancer cell lines, as well as endometrial cancer cell lines, were treated with leptomycin B (LMB), cisplatin and TRAIL, either singly or in combination, in order to induce apoptosis. Western blot and flow cytometry analysis were used to quantify caspases activation and apoptosis induction. Immunofluorescence was used to determine nuclear localization of p53. Colony formation assays were performed to determine therapeutic effectiveness; p53 siRNA were used to establish p53 role in sensitization. Additional information from GEO database and Prognoscan allowed us to contextualise the obtained results. Finally, qRT-PCR was performed to measure apoptotic regulators expression.ResultsTRAIL and LMB combination therapy lead to cleavage of caspase-3 as well as the appearance of cleaved-PARP, and thus, apoptosis. Further experiments suggested that sensitization was achieved through the synergistic downregulation of multiple inhibitor of apoptosis, as well as the activation of apoptotic pathways. p53 was enriched in the nucleus following LMB treatments, but did not seem to be required for sensitization; additional experiments suggested that p53 opposed the apoptotic effects of LMB and TRAIL. Results obtained from public data repositories suggested that CRM1 was a driver of chemoresistance and poor prognostic; DR5, on the other hand, acted as as a marker of positive prognostic.ConclusionsTaken together, our results suggest that the use of CRM1 inhibitors, in combination to chemotherapeutic compounds, could be highly effective in the treatment of gynecological malignancies.Electronic supplementary materialThe online version of this article (10.1186/s12964-018-0252-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.