Contamination of the marine environment following the accident in the Fukushima Dai-ichi nuclear power plant represented the most important artificial radioactive release flux into the sea ever known. The radioactive marine pollution came from atmospheric fallout onto the ocean, direct release of contaminated water from the plant and transport of radioactive pollution from leaching through contaminated soil. In the immediate vicinity of the plant (less than 500 m), the seawater concentrations reached 68,000 Bq.L(-1) for (134)Cs and (137)Cs, and exceeded 100,000 Bq.L(-1) for (131)I in early April. Due to the accidental context of the releases, it is difficult to estimate the total amount of radionuclides introduced into seawater from data obtained in the plant. An evaluation is proposed here, based on measurements performed in seawater for monitoring purposes. Quantities of (137)Cs in seawater in a 50-km area around the plant were calculated from interpolation of seawater measurements. The environmental halftime of seawater in this area is deduced from the time-evolution of these quantities. This halftime appeared constant at about 7 days for (137)Cs. These data allowed estimation of the amount of principal marine inputs and their evolution in time: a total of 27 PBq (12 PBq-41 PBq) of (137)Cs was estimated up to July 18. Even though this main release may be followed by residual inputs from the plant, river runoff and leakage from deposited sediments, it represents the principal source-term that must be accounted for future studies of the consequences of the accident on marine systems. The (137)Cs from Fukushima will remain detectable for several years throughout the North Pacific, and (137)Cs/(134)Cs ratio will be a tracer for future studies.
Appropriate field data are required to check the reliability of hydrodynamic models simulating the dispersion of soluble substances in the marine environment. This study deals with the collection of physical measurements and soluble tracer data intended specifically for this kind of validation. The intensity of currents as well as the complexity of topography and tides around the Cap de La Hague in the centre of the English Channel make it one of the most difficult areas to represent in terms of hydrodynamics and dispersion. Controlled releases of tritium-in the form of HTO-are carried out in this area by the AREVA-NC plant, providing an excellent soluble tracer. A total of 14,493 measurements were acquired to track dispersion in the hours and days following a release. These data, supplementing previously gathered data and physical measurements (bathymetry, water-surface levels, Eulerian and Lagrangian current studies) allow us to test dispersion models from the hour following release to periods of several years which are not accessible with dye experiments. The dispersion characteristics are described and methods are proposed for comparing models against measurements. An application is proposed for a 2 dimensions high-resolution numerical model. It shows how an extensive dataset can be used to build, calibrate and validate several aspects of the model in a highly dynamic and macrotidal area: tidal cycle timing, tidal amplitude, fixed-point current data, hodographs. This study presents results concerning the model's ability to reproduce residual Lagrangian currents, along with a comparison between simulation and high-frequency measurements of tracer dispersion.
Modelling three-dimensional wave-current-turbulence interactions in extreme tidal environments is still challenging and necessary for the development of the tidal industry, particularly for the dimensioning of tidal converters. Following this objective, we focus our study on the most energetic tidal site in Western Europe, the Alderney Race (France). Due to the strong tidal current at this location, wave-current interactions were poorly studied by the past and often neglected. We propose to assess how they impact the Alderney Race hydrodynamic by the use of numerical modelling and in-situ measurements. In this study, the following wave-current interactions were observed: (i) Stokes drift effects inducing an increase/decrease in the current depending on the angle between waves and current, with a maximum influence near the surface, (ii) wave enhancement of the bottom friction reducing the tidal current, (iii) refraction of waves by the current, generating changes in waves directions, and (iv) wave breaking ascribed to tidal current, increasing the turbulent mixing. A non-stationary time delay, varying within a same tidal cycle, was noted, which is reduced by including the local wind effects and by adjusting the bottom stress formulation. This study shows that wave-current interactions play a non-negligible role in Alderney Race although the strong tidal current and that they need to consider by the tidal industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.