Consider a network in which n distributed nodes are connected to a single server. Each node continuously observes a data stream consisting of one value per discrete time step. The server has to continuously monitor a given parameter defined over all information available at the distributed nodes. That is, in any time step t, it has to compute an output based on all values currently observed across all streams. To do so, nodes can send messages to the server and the server can broadcast messages to the nodes. The objective is the minimisation of communication while allowing the server to compute the desired output.We consider monitoring problems related to the domain Dt defined to be the set of values observed by at least one node at time t. We provide randomised algorithms for monitoring Dt, (approximations of) the size |Dt| and the frequencies of all members of Dt. Besides worst-case bounds, we also obtain improved results when inputs are parameterised according to the similarity of observations between consecutive time steps. This parameterisation allows to exclude inputs with rapid and heavy changes, which usually lead to the worst-case bounds but might be rather artificial in certain scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.