Background: Misalignment to the incorrect vertebral body remains a rare but serious patient safety risk in image-guided radiotherapy (IGRT). Purpose: Our group has proposed that an automated image-review algorithm be inserted into the IGRT process as an interlock to detect off -by-one vertebral body errors. This study presents the development and multi-institutional validation of a convolutional neural network (CNN)-based approach for such an algorithm using patient image data from a planar stereoscopic x-ray IGRT system. Methods: X-rays and digitally reconstructed radiographs (DRRs) were collected from 429 spine radiotherapy patients (1592 treatment fractions) treated at six institutions using a stereoscopic x-ray image guidance system. Clinicallyapplied, physician approved, alignments were used for true-negative, "no-error" cases. "Off -by-one vertebral body" errors were simulated by translating DRRs along the spinal column using a semi-automated method. A leave-oneinstitution-out approach was used to estimate model accuracy on data from unseen institutions as follows: All of the images from five of the institutions were used to train a CNN model from scratch using a fixed network architecture and hyper-parameters. The size of this training set ranged from 5700 to 9372 images, depending on exactly which five institutions were contributing data. The training set was randomized and split using a 75/25 split into the final training/ validation sets. X-ray/ DRR image pairs and the associated binary labels of "no-error" or "shift" were used as the model input. Model accuracy was evaluated using images from the sixth institution, which were left out of the training phase entirely. This test set ranged from 180 to 3852 images, again depending on which institution had been left out of the training phase. The trained model was used to classify the images from the test set as either "no-error" or "shifted", and the model predictions were compared to the ground truth labels to assess the model accuracy. This process was repeated until each institution's images had been used as the testing dataset. Results: When the six models were used to classify unseen image pairs from the institution left out during training, the resulting receiver operating characteristic area under the curve values ranged from 0.976 to 0.998. With the specificity fixed at 99%, the corresponding sensitivities ranged from 61.9% to 2662
Purpose Image‐guided radiotherapy (IGRT) research sometimes involves simulated changes to patient positioning using retrospectively collected clinical data. For example, researchers may simulate patient misalignments to develop error detection algorithms or positioning optimization algorithms. The Brainlab ExacTrac system can be used to retrospectively “replay” simulated alignment scenarios but does not allow export of digitally reconstructed radiographs (DRRs) with simulated positioning variations for further analysis. Here we describe methods to overcome this limitation and replicate ExacTrac system DRRs by using projective geometry parameters contained in the ExacTrac configuration files saved for every imaged subject. Methods Two ExacTrac DRR generators were implemented, one with custom MATLAB software based on first principles, and the other using libraries from the Insight Segmentation and Registration Toolkit (ITK). A description of perspective projections for DRR rendering applications is included, with emphasis on linear operators in real projective space double-struckP3${\mathbb{P}^3}$. We provide a general methodology for the extraction of relevant geometric values needed to replicate ExacTrac DRRs. Our generators were tested on phantom and patient images, both acquired in a known treatment position. We demonstrate the validity of our methods by comparing our generated DRRs to reference DRRs produced by the ExacTrac system during a treatment workflow using a manual landmark analysis as well as rigid registration with the elastix software package. Results Manual landmarks selected between the corresponding DRR generators across patient and phantom images have an average displacement of 1.15 mm. For elastix image registrations, we found that absolute value vertical and horizontal translations were 0.18 and 0.35 mm on average, respectively. Rigid rotations were within 0.002 degrees. Conclusion Custom and ITK‐based algorithms successfully reproduce ExacTrac DRRs and have the distinctive advantage of incorporating any desired 6D couch position. An open‐source repository is provided separately for users to implement in IGRT patient positioning research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.