Highly prevalent conditions with multiple and complex underlying etiologies are a challenge to public health. Undernutrition, for example, affects 20% of children in the developing world. The cause and consequence of poor nutrition are multifaceted. Undernutrition has been associated with half of all deaths worldwide in children aged <5 years; in addition, its pernicious long-term effects in early childhood have been associated with cognitive and physical growth deficits across multiple generations and have been thought to suppress immunity to further infections and to reduce the efficacy of childhood vaccines. The Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health (MAL-ED) Study, led by the Fogarty International Center of the National Institutes of Health and the Foundation for the National Institutes of Health, has been established at sites in 8 countries with historically high incidence of diarrheal disease and undernutrition. Central to the study is the hypothesis that enteropathogen infection contributes to undernutrition by causing intestinal inflammation and/or by altering intestinal barrier and absorptive function. It is further postulated that this leads to growth faltering and deficits in cognitive development. The effects of repeated enteric infection and undernutrition on the immune response to childhood vaccines is also being examined in the study. MAL-ED uses a prospective longitudinal design that offers a unique opportunity to directly address a complex system of exposures and health outcomes in the community-rather than the relatively rarer circumstances that lead to hospitalization-during the critical period of development of the first 2 years of life. Among the factors being evaluated are enteric infections (with or without diarrhea) and other illness indicators, micronutrient levels, diet, socioeconomic status, gut function, and the environment. MAL-ED aims to describe these factors, their interrelationships, and their overall impact on health outcomes in unprecedented detail, and to make individual, site-specific, and generalized recommendations regarding the nature and timing of possible interventions aimed at improving child health and development in these resource-poor settings.
Diarrheal disease, still a major cause of childhood illness, is caused by numerous, diverse infectious microorganisms, which are differentially sensitive to environmental conditions. Enteropathogen‐specific impacts of climate remain underexplored. Results from 15 studies that diagnosed enteropathogens in 64,788 stool samples from 20,760 children in 19 countries were combined. Infection status for 10 common enteropathogens—adenovirus, astrovirus, norovirus, rotavirus, sapovirus, Campylobacter , ETEC, Shigella , Cryptosporidium and Giardia —was matched by date with hydrometeorological variables from a global Earth observation dataset—precipitation and runoff volume, humidity, soil moisture, solar radiation, air pressure, temperature, and wind speed. Models were fitted for each pathogen, accounting for lags, nonlinearity, confounders, and threshold effects. Different variables showed complex, non‐linear associations with infection risk varying in magnitude and direction depending on pathogen species. Rotavirus infection decreased markedly following increasing 7‐day average temperatures—a relative risk of 0.76 (95% confidence interval: 0.69–0.85) above 28°C—while ETEC risk increased by almost half, 1.43 (1.36–1.50), in the 20–35°C range. Risk for all pathogens was highest following soil moistures in the upper range. Humidity was associated with increases in bacterial infections and decreases in most viral infections. Several virus species' risk increased following lower‐than‐average rainfall, while rotavirus and ETEC increased with heavier runoff. Temperature, soil moisture, and humidity are particularly influential parameters across all enteropathogens, likely impacting pathogen survival outside the host. Precipitation and runoff have divergent associations with different enteric viruses. These effects may engender shifts in the relative burden of diarrhea‐causing agents as the global climate changes.
Culture-independent diagnostics have revealed a larger burden of Shigella among children in low-resource settings than previously recognized. We further characterized the epidemiology of Shigella in the first two years of life in a multisite birth cohort. We tested 41,405 diarrheal and monthly non-diarrheal stools from 1,715 children for Shigella by quantitative PCR. To assess risk factors, clinical factors related to age and culture positivity, and associations with inflammatory biomarkers, we used log-binomial regression with generalized estimating equations. The prevalence of Shigella varied from 4.9%-17.8% in non-diarrheal stools across sites, and the incidence of Shigella -attributable diarrhea was 31.8 cases (95% CI: 29.6, 34.2) per 100 child-years. The sensitivity of culture compared to qPCR was 6.6% and increased to 27.8% in Shigella -attributable dysentery. Shigella diarrhea episodes were more likely to be severe and less likely to be culture positive in younger children. Older age (RR: 1.75, 95% CI: 1.70, 1.81 per 6-month increase in age), unimproved sanitation (RR: 1.15, 95% CI: 1.03, 1.29), low maternal education (<10 years, RR: 1.14, 95% CI: 1.03, 1.26), initiating complementary foods before 3 months (RR: 1.10, 95% CI: 1.01, 1.20), and malnutrition (RR: 0.91, 95% CI: 0.88, 0.95 per unit increase in weight-for-age z-score) were risk factors for Shigella . There was a linear dose-response between Shigella quantity and myeloperoxidase concentrations. The burden of Shigella varied widely across sites, but uniformly increased through the second year of life and was associated with intestinal inflammation. Culture missed most clinically relevant cases of severe diarrhea and dysentery.
BackgroundDietary and illness factors affect risk of growth faltering; the role of enteropathogens is less clear. As part of the Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) study, we quantify the effects of enteropathogen infection, diarrhoea and diet on child growth.MethodsNewborns were enrolled and followed until 24 months. Length and weight were assessed monthly. Illnesses and breastfeeding practices were documented biweekly; from 9 to 24 months, non-breast milk intakes were quantified monthly. Routinely collected non-diarrhoeal stools were analysed for a broad array of enteropathogens. A linear piecewise spline model was used to quantify associations of each factor with growth velocity in seven of eight MAL-ED sites; cumulative effects on attained size at 24 months were estimated for mean, low (10th percentile) and high (90th percentile) exposure levels. Additionally, the six most prevalent enteropathogens were evaluated for their effects on growth.ResultsDiarrhoea did not have a statistically significant effect on growth. Children with high enteropathogen exposure were estimated to be 1.21±0.33 cm (p<0.001; 0.39 length for age (LAZ)) shorter and 0.08±0.15 kg (p=0.60; 0.08 weight-for-age (WAZ)) lighter at 24 months, on average, than children with low exposure. Campylobacter and enteroaggregativeEscherichia coli detections were associated with deficits of 0.83±0.33 and 0.85±0.31 cm in length (p=0.011 and 0.001) and 0.22±0.15 and 0.09±0.14 kg in weight (p=0.14 and 0.52), respectively. Children with low energy intakes and protein density were estimated to be 1.39±0.33 cm (p<0.001; 0.42 LAZ) shorter and 0.81±0.15 kg (p<0.001; 0.65 WAZ) lighter at 24 months than those with high intakes.ConclusionsReducing enteropathogen burden and improving energy and protein density of complementary foods could reduce stunting.
Campylobacter species infections have been associated with malnutrition and intestinal inflammation among children in low-resource settings. However, it remains unclear whether that association is specific to Campylobacter jejuni/coli. The aim of this study was to assess the association between both all Campylobacter species infections and Campylobacter jejuni/coli infections on growth and enteric inflammation in children aged 1–24 months. We analyzed data from 1715 children followed from birth until 24 months of age in the MAL-ED birth cohort study, including detection of Campylobacter species by enzyme immunoassay and Campylobacter jejuni/coli by quantitative PCR in stool samples. Myeloperoxidase (MPO) concentration in stool, used as a quantitative index of enteric inflammation, was measured. The incidence rate per 100 child-months of infections with Campylobacter jejuni/coli and Campylobacter species during 1–24 month follow up were 17.7 and 29.6 respectively. Female sex of child, shorter duration of exclusive breastfeeding, lower maternal age, mother having less than 3 living children, maternal educational level of <6 years, lack of routine treatment of drinking water, and unimproved sanitation were associated with Campylobacter jejuni/coli infection. The cumulative burden of both Campylobacter jejuni/coli infections and Campylobacter species were associated with poor growth and increased intestinal inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.