In male elite gymnastics, lately, eccentric training is often used to improve the maximum specific strength of static elements on rings. Therefore, in this study, we aimed to investigate the effects of a three-week, gymnastic-specific, eccentric-isokinetic (0.1 m/s) cluster training with a change of stimulus after three of six training sessions (eccentric-isokinetic with additional load) on a computer-controlled training device on the improvement of the elements swallow and support scale on rings. Maximum strength and strength endurance in maintaining the static positions of ten international elite male gymnasts were determined on a weekly basis. After three weeks of training, specific maximum strength and strength endurance increased significantly (strength: swallow: +8.72%, p < 0.001; support scale: 8.32%, p < 0.0001; strength endurance: swallow: +122.36%; p = 0.02; Support Scale: +93.30%; p = 0.03). Consequently, top gymnasts can considerably improve ring-specific strength and strength endurance in only three weeks. The separate analysis of the effects of both eccentric-isokinetic training modalities showed that efficiency might even be increased in future training interventions. We suggest using this type of training in phases in which the technical training load is low and monitoring the adaptations in order to compile an individually optimized training after an intervention.
On rings, in men’s artistic gymnastics, the general strength requirements for important static elements remain elusive. Therefore, the aim was to describe the relationship between a new conditioning strength test and a maximum strength test of static elements on rings in order to determine the minimal strength level (benchmarks) required to maintain these elements with one’s own body weight. Nineteen elite gymnasts performed a concentric (1RM isoinertial) and eccentric (isokinetic: 0.1 m/s) conditioning strength test for swallow/support scale (supine position) and inverted cross (seated position) on a computer-controlled device and a maximum strength test maintaining these elements for 5 s on rings with counterweight or additional weight. High correlation coefficients were found between the conditioning maximum strength for swallow/support scale (r: 0.65 to 0.92; p < 0.05) and inverted cross (r: 0.62 to 0.69; p > 0.05) and the maximum strength of the elements on rings. Strength benchmarks varied between 56.66% (inverted cross concentric) and 94.10% (swallow eccentric) of body weight. Differences in biomechanical characteristics and technical requirements of strength elements on rings may (inter alia) explain the differences between correlations. Benchmarks of conditioning strength may help coaches and athletes systematize the training of strength elements on rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.