We present a method that "meta" classifies whether segments predicted by a semantic segmentation neural network intersect with the ground truth. For this purpose, we employ measures of dispersion for predicted pixel-wise class probability distributions, like classification entropy, that yield heat maps of the input scene's size. We aggregate these dispersion measures segment-wise and derive metrics that are well-correlated with the segment-wise IoU of prediction and ground truth. This procedure yields an almost plug and play post-processing tool to rate the prediction quality of semantic segmentation networks on segment level. This is especially relevant for monitoring neural networks in online applications like automated driving or medical imaging where reliability is of utmost importance. In our tests, we use publicly available state-of-the-art networks trained on the Cityscapes dataset and the BraTS2017 data set and analyze the predictive power of different metrics as well as different sets of metrics. To this end, we compute logistic LASSO regression fits for the task of classifying IoU = 0 vs. IoU > 0 per segment and obtain AUROC values of up to 91.55%. We complement these tests with linear regression fits to predict the segment-wise IoU and obtain prediction standard deviations of down to 0.130 as well as R 2 values of up to 84.15%. We show that these results clearly outperform standard approaches.
We present a novel region based active learning method for semantic image segmentation, called MetaBox+. For acquisition, we train a meta regression model to estimate the segment-wise Intersection over Union (IoU ) of each predicted segment of unlabeled images. This can be understood as an estimation of segment-wise prediction quality. Queried regions are supposed to minimize to competing targets, i.e., low predicted IoU values / segmentation quality and low estimated annotation costs. For estimating the latter we propose a simple but practical method for annotation cost estimation. We compare our method to entropy based methods, where we consider the entropy as uncertainty of the prediction. The comparison and analysis of the results provide insights into annotation costs as well as robustness and variance of the methods. Numerical experiments conducted with two different networks on the Cityscapes dataset clearly demonstrate a reduction of annotation effort compared to random acquisition. Noteworthily, we achieve 95% of the mean Intersection over Union (mIoU ), using MetaBox+ compared to when training with the full dataset, with only 10.47% / 32.01% annotation effort for the two networks, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.