On March 16 2020, French authorities ordered a large scale lockdown to counter the COVID-19 epidemic wave rising in the country, stopping non-essential economic, educational, and entertainment activities, maintaining mainly food retailers and healthcare institutions. One month later, the number of new hospitalizations and ICU admissions had reached a plateau and were beginning a slow descent. We developed a spatialized, deterministic, age-structured, and compartmental SARS-CoV-2 transmission model able to reproduce the pre-lockdown dynamic of the epidemic in each of the 13 French metropolitan regions. Thanks to this model, we estimate, at regional and national levels, the total number of hospitalizations, ICU admissions, hospital beds requirements (hospitalization and ICU), and hospital deaths which may have been prevented by this massive and unprecedented intervention in France. If no control measures had been set up, between March 19 and April 19 2020, our analysis shows that almost 23% of the French population would have been affected by COVID-19 (14.8 million individuals). Hence, the French lockdown prevented 587,730 hospitalizations and 140,320 ICU admissions at the national level. The total number of ICU beds required to treat patients in critical conditions would have been 104,550, far higher than the maximum French ICU capacity. This first month of lockdown also permitted to avoid 61,739 hospital deaths, corresponding to a 83.5% reduction of the total number of predicted deaths. Our analysis shows that in absence of any control measures, the COVID-19 epidemic would have had a critical morbidity and mortality burden in France, overwhelming in a matter of weeks French hospital capacities.
Europe is now considered as the epicenter of the SARS-CoV-2 pandemic, France being among the most impacted country. In France, there is an increasing concern regarding the capacity of the healthcare system to sustain the outbreak, especially regarding intensive care units (ICU). The aim of this study was to estimate the dynamics of the epidemic in France, and to assess its impact on healthcare resources for each French metropolitan Region. We developed a deterministic, age-structured, Susceptible-Exposed-Infectious-Removed (SEIR) model based on catchment areas of each COVID-19 referral hospitals. We performed one month ahead predictions (up to April 14, 2020) for three different scenarios (R 0 = 1.5, R 0 = 2.25, R 0 = 3), where we estimated the daily number of COVID-19 cases, hospitalizations and deaths, the needs in ICU beds per Region and the reaching date of ICU capacity limits. At the national level, the total number of infected cases is expected to range from 22,872 in the best case (R 0 = 1.5) to 161,832 in the worst case (R 0 = 3), while the total number of deaths would vary from 1,021 to 11,032, respectively. At the regional level, all ICU capacities may be overrun in the worst scenario. Only seven Regions may lack ICU beds in the mild scenario (R 0 = 2.25) and only one in the best case. In the three scenarios, Corse may be the first Region to see its ICU capacities overrun. The two other Regions, whose capacity will be overrun shortly after are Grand-Est and Bourgogne-Franche-Comté. Our analysis shows that, even in the best case scenario, the French healthcare system will very soon be overwhelmed. While drastic social distancing measures may temper our results, a massive reorganization leading to an expansion of French ICU capacities seems to be necessary to manage the coming wave of critically affected COVID-19 patients.
International audienceBackground: Quadrivalent influenza vaccines (QIVs) contain antigens derived from an additional influenza type B virus as compared with currently used trivalent influenza vaccines (TIVs). This should overcome a potential reduced vaccine protection due to mismatches between TIV and circulating B viruses. In this study, we systematically reviewed the available literature on health economic evaluations of switching from TIV to QIV.Areas covered: The databases of Medline and Embase were searched systematically to identify health economic evaluations of QIV versus TIV published before September 2016.A total of sixteen studies were included, thirteen cost-effectiveness analyses and three cost-comparisons.Expert commentary: Published evidence on the cost-effectiveness of QIV suggests that switching from TIV to QIV would be a valuable intervention from both the public health and economic viewpoint. However, more research seems mandatory. Our main recommendations for future research include: 1) more extensive use of dynamic models in order to estimate the full impact of QIV on influenza transmission including indirect effects, 2) improved availability of data on disease outcomes and costs related to influenza type B viruses, and 3) more research on immunogenicity of natural influenza infection and vaccination, with emphasis on cross-reactivity between different influenza B viruses and duration of protection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.