In this article, we focus on the understanding of the
normalPtxnormalCoy
electrocatalysts degradation in polymer electrolyte fuel cell (PEFC) environments. A multiscale atomistic/kinetic model is derived providing mechanistic insights on the impact of the nanostructure and operating conditions on
normalPtxnormalCoy
nanoparticles durability. On the basis of ab initio (AI) data, we identify favorable pathways of the oxygen reduction reaction (ORR) on
normalPtxnormalCoy
nanoparticles and of the competitive Pt–Co dissolution in acidic media. The derived AI kinetics is coupled to a description of the atomic reorganization at the nanoparticle level as a function of the cumulated Pt and Co mass losses. This nanoscale model is coupled with a transport microscale model of charges and
O2
through a PEFC cathode, and simulation sensitivity studies to operating conditions and initial compositions/morphologies are performed and complimented by microstructural and electrochemical characterizations carried out on aging direct liquid injection metallorganic chemical vapor deposition elaborated model electrodes detailed in our experimental companion paper.
The authors demonstrate a unique low cost process to print 2D, submicron size, and high refractive index nanopillars using a direct colloidal-photolithography process. A well collimated i-line source emitting at 365 nm wavelength illuminates a mono layer of silica microspheres of 1 μm diameter deposited on a photosensitive TiO2-based sol-gel layer. No etching process is needed since this layer is directly UV photo patternable like a negative photoresist. Furthermore, this thin layer offers interesting optical properties (high refractive index and optical transparency) and good mechanical and chemical stability and thus can be directly used as a functional microstructure (for PV or sensor applications, for example). The paper describes the modeling of the electric field distribution below the spheres during the illumination process, the photochemistry of the TiO2 sol-gel layer process, and preliminary results of TiO2 nanopillars of around 200 nm in diameter fabricated on a three-inch substrate.
In this paper we focus on the understanding of the PtxCoy catalysts degradation in PEFC environments. A multiscale atomistic/kinetic model is derived providing new mechanistic insights on the impact of clusters nanostructure and operating conditions on PtxCoy materials durability. On the basis of ab initio (AI) data, we identify favorable pathways of the ORR on PtxCoy clusters and of the competitive Pt-Co dissolution in acidic media. The derived AI-kinetics is coupled to a description of the atomic reorganisation at the cluster level as function of the cumulated Pt and Co mass losses. This interfacial model is coupled with a transport microscale model of charges and O2 through the PEFC cathode, and simulation sensitivity studies to operating conditions and initial compositions/morphologies are performed. Experiments on DLIMOCVD-elaborated model electrodes are carried out by using RDE and half-cells: degradation structural changes are characterized by using TEM, XRD and XPS complementing the modeling studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.