With the advent of the Semantic Web, description logics have become one of the most prominent paradigms for knowledge representation and reasoning. Progress in research and applications, however, is constrained by the lack of well-structured knowledge bases consisting of a sophisticated schema and instance data adhering to this schema. It is paramount that suitable automated methods for their acquisition, maintenance, and evolution will be developed. In this paper, we provide a learning algorithm based on refinement operators for the description logic ALCQ including support for concrete roles. We develop the algorithm from thorough theoretical foundations by identifying possible abstract property combinations which refinement operators for description logics can have. Using these investigations as a basis, we derive a practically useful complete and proper refinement operator. The operator is then cast into a learning algorithm and evaluated using our implementation DL-Learner. The results of the evaluation show that our approach is superior to other learning approaches on description logics, and is competitive with established ILP systems.
Abstract. The Web of Data currently coming into existence through the Linked Open Data (LOD) effort is a major milestone in realizing the Semantic Web vision. However, the development of applications based on LOD faces difficulties due to the fact that the different LOD datasets are rather loosely connected pieces of information. In particular, links between LOD datasets are almost exclusively on the level of instances, and schema-level information is being ignored. In this paper, we therefore present a system for finding schema-level links between LOD datasets in the sense of ontology alignment. Our system, called BLOOMS, is based on the idea of bootstrapping information already present on the LOD cloud. We also present a comprehensive evaluation which shows that BLOOMS outperforms state-of-the-art ontology alignment systems on LOD datasets. At the same time, BLOOMS is also competitive compared with these other systems on the Ontology Evaluation Alignment Initiative Benchmark datasets.
An important question for the upcoming Semantic Web is how to best combine open world ontology languages, such as the OWL-based ones, with closed world rule-based languages. One of the most mature proposals for this combination is known as hybrid MKNF knowledge bases [52], and it is based on an adaptation of the Stable Model Semantics to knowledge bases consisting of ontology axioms and rules. In this paper we propose a well-founded semantics for nondisjunctive hybrid MKNF knowledge bases that promises to provide better efficiency of reasoning, and that is compatible with both the OWL-based semantics and the traditional Well-Founded Semantics for logic programs. Moreover, our proposal allows for the detection of inconsistencies, possibly occurring in tightly integrated ontology axioms and rules, with only little additional effort. We also identify tractable fragments of the resulting language.
Ontology alignment is an important part of enabling the semantic web to reach its full potential. The vast majority of ontology alignment systems use one or more string similarity metrics, but often the choice of which metrics to use is not given much attention. In this work we evaluate a wide range of such metrics, along with string preprocessing strategies such as removing stop words and considering synonyms, on different types of ontologies. We also present a set of guidelines on when to use which metric. We furthermore show that if optimal string similarity metrics are chosen, those alone can produce alignments that are competitive with the state of the art in ontology alignment systems. Finally, we examine the improvements possible to an existing ontology alignment system using an automated string metric selection strategy based upon the characteristics of the ontologies to be aligned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.