It has been postulated that the failing heart suffers from chronic energy starvation, and that derangements in cardiac energy conversion are accessory to the progressive nature of this disease. The molecular mechanisms driving this 'metabolic remodelling' process and their significance for the development of cardiac failure are still open to discussion. Next to changes in mitochondrial function, the hypertrophied heart is characterized by a marked shift in substrate preference away from fatty acids towards glucose. It has been argued that the decline in fatty acid oxidation is not fully compensated for by a rise in glucose oxidation, thereby imposing an additional burden on overall ATP generating capacity. Several lines of evidence suggest that these metabolic adaptations are brought about, at least in part, by alterations in the rate of transcription of genes encoding for proteins involved in substrate transport and metabolism. Here, the principal metabolic changes are reviewed and the various molecular mechanisms that are likely to play a role are discussed. In addition, the potential significance of these changes for the aetiology of heart failure is evaluated.
The present findings show that the absence of PPARalpha results in a more pronounced hypertrophic growth response and cardiac dysfunction that are associated with an enhanced expression of markers of inflammation and extracellular matrix remodelling. These findings indicate that PPARalpha exerts salutary effects during cardiac hypertrophy.
Cardiac fibroblast proliferation, fibroblast to myofibroblast differentiation and collagen synthesis were reduced after activation of PPARdelta, suggesting that PPARdelta represents an attractive molecular target for attenuating cardiac fibrosis.
Accumulating evidence indicates an important role for inflammation in cardiac hypertrophy and failure. Peroxisome proliferator-activated receptors (PPARs) have been reported to attenuate inflammatory signaling pathways and, as such, may interfere with cardiac remodeling. Accordingly, the objectives of the present study were to explore the relationship between cardiomyocyte hypertrophy and inflammation and to investigate whether PPAR␣ and PPAR␦ are able to inhibit NF-B activation and, consequently, the hypertrophic growth response of neonatal rat cardiomyocytes (NCM). mRNA levels of markers of both hypertrophy and inflammation were increased following treatment with the pro-hypertrophic factor phenylephrine (PE) or the chemokine TNF-␣. Induction of inflammatory genes was found to be fast (within 2 h after stimulation) and transient, while induction of hypertrophic marker genes was more gradual (peaking at 24 -48 h). Inflammatory and hypertrophic pathways appeared to converge on NF-B as both PE and TNF-␣ increased NF-B binding activity as measured by electrophoretic mobility shift assay. Following transient transfection, the p65-induced transcriptional activation of a NF-B reporter construct was significantly blunted after co-transfection of PPAR␣ or PPAR␦ in the presence of their respective ligands. Finally, adenoviral overexpression of PPAR␣ and PPAR␦ markedly attenuated cell enlargement and the expression of hypertrophic marker genes in PE-stimulated NCM. The collective findings reveal a close relationship between hypertrophic and inflammatory signaling pathways in the cardiomyocyte. It was shown that both PPAR␣ and PPAR␦ are able to mitigate cardiomyocyte hypertrophy in vitro by inhibiting NF-B activation.
Background
The AdaptivCRT (aCRT) algorithm continuously adjusts cardiac resynchronization therapy (CRT) according to intrinsic atrioventricular conduction, providing synchronized left ventricular pacing in patients with normal PR interval and adaptive BiV pacing in patients with prolonged PR interval. Previous analyses demonstrated an association between aCRT and clinical benefit. We evaluated the incidence of patient mortality and atrial fibrillation (AF) with aCRT compared with standard CRT in a real‐world population.
Methods and Results
Patients enrolled in the Medtronic Personalized CRT Registry and implanted with a CRT from 2013‐2018 were divided into aCRT ON or standard CRT groups based upon device‐stored data. A Frailty survival model was used to evaluate the potential survival benefit of aCRT, accounting for patient heterogeneity and center variability. Daily AF burden and first device‐detected AF episodes of various durations were recorded by the device during follow‐up.
A total of 1814 CRT patients with no reported long‐standing AF history at implant were included. Mean follow‐up time was 26.1 ± 16.5 months and 1162 patients (64.1%) had aCRT ON. Patient survival probability at 36 months was 88.3% for aCRT ON and 83.7% for standard CRT (covariate‐adjusted hazard ratio [HR] = 0.71, 95% CI: 0.53‐0.96, P = .028). Mean AF burden during follow‐up was consistently lower in aCRT ON patients compared with standard CRT. At 36 months, the probability of AF was lower in patients with aCRT ON, regardless of which AF definition threshold was applied (6 minutes‐30 days, all P < .001).
Conclusion
Use of the AdaptivCRT algorithm was associated with improved patient survival and lower incidence of AF in a real‐world, prospective, nonrandomized registry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.