Under strong laser illumination, few-layer graphene exhibits both a transmittance increase due to saturable absorption and a nonlinear phase shift. Here, we unambiguously distinguish these two nonlinear optical effects and identify both real and imaginary parts of the complex nonlinear refractive index of graphene. We show that graphene possesses a giant nonlinear refractive index n(2)≃10(-7) cm(2) W(-1), almost 9 orders of magnitude larger than bulk dielectrics. We find that the nonlinear refractive index decreases with increasing excitation flux but slower than the absorption. This suggests that graphene may be a very promising nonlinear medium, paving the way for graphene-based nonlinear photonics.
By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third-order nonlinear response of graphene and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, n2=-1.1×10-13 m2/W. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature and to discuss the discrepancies, taking into account parameters such as doping.
We show experimentally that the two-component multimode spatial optical vector soliton, i.e., a two-hump self-guided laser beam, exhibits in Kerr media a sharp space-inversion symmetry-breaking instability. The experiment is performed in a CS2 planar waveguide using the orthogonal circular polarization states of light as the two components of the vector soliton.
We experimentally and numerically study dispersive wave emission, soliton fission, and supercontinuum generation in a silicon wire at telecommunication wavelengths. Through dispersion engineering, we experimentally confirm a previously reported numerical study and show that the emission of resonant radiation from the solitons can lead to the generation of a supercontinuum spanning over 500 nm. An excellent agreement with numerical simulations is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.