No abstract
Cryptographic protocols are successfully analyzed using formal methods. However, formal approaches usually consider the encryption schemes as black boxes and assume that an adversary cannot learn anything from an encrypted message except if he has the key. Such an assumption is too strong in general since some attacks exploit in a clever way the interaction between protocol rules and properties of cryptographic operators. Moreover, the executability of some protocols relies explicitly on some algebraic properties of cryptographic primitives such as commutative encryption. We give a list of some relevant algebraic properties of cryptographic operators, and for each of them, we provide examples of protocols or attacks using these properties. We also give an overview of the existing methods in formal approaches for analyzing cryptographic protocols.
Mobile robot networks emerged in the past few years as a promising distributed computing model. Existing work in the literature typically ensures the correctness of mobile robot protocols via ad hoc handwritten proofs, which, in the case of asynchronous execution models, are both cumbersome and error-prone.In this paper, we propose the first formal model and general verification (by model-checking) methodology for mobile robot protocols operating in a discrete space (that is, the set of possible robot positions is finite). Our contribution is threefold. First, we formally model using synchronized automata a network of mobile robots operating under various synchrony (or asynchrony) assumptions. Then, we use this formal model as input model for the DiVinE model-checker and prove the equivalence of the two models. Third, we verify using DiVinE two known protocols for variants of the ring exploration in an asynchronous setting (exploration with stop and perpetual exclusive exploration).The exploration with stop we verify was manually proved correct only when the number of robots is k > 17, and n (the ring size) and k are co-prime. As the necessity of this bound was not proved in the original paper, our methodology demonstrates that for several instances of k and n not covered in the original paper, the algorithm remains correct. In the case of the perpetual exclusive exploration protocol, our methodology exhibits a counter-example in the completely asynchronous setting where safety is violated, which is used to correct the original protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.