The subpopulation of dorsal root ganglion (DRG) neurons recognized by Griffonia simplicifolia isolectin B4 (IB4) differ from other neurons by expressing receptors for glial cell line-derived neurotrophic factor (GDNF) rather than neurotrophins. Additionally, IB4-labeled neurons do not express the laminin receptor, ␣7-integrin (Gardiner et al., 2005), necessary for optimal axonal regeneration in the peripheral nervous system. In cultures of dissociated DRG neurons of adult mice on laminin, robust spontaneous neurite outgrowth from IB4-negative neurons occurs and is strongly enhanced by previous axotomy. In contrast, IB4-labeled neurons show little neurite outgrowth and do not express GAP 43, even after axotomy or culture with GDNF. Moreover, growth of their axons through collagen gels is impaired compared with other DRG neurons. To determine whether the sparse neurite outgrowth of IB4-labeled neurons is attributable to lack of integrin expression, DRG cultures were infected with a herpes simplex 1 vector encoding ␣7-integrin, but its forced expression failed to promote neurite outgrowth in either IB4-labeled or other DRG neurons or in cultured adult retinal ganglion cells. Forced coexpression of both ␣7-integrin and GAP 43 also failed to promote neurite outgrowth in IB4-labeled neurons. In addition, cultured sciatic nerve segments were found to release much lower levels of GDNF, demonstrated by ELISA, than nerve growth factor. These findings together with their impaired intrinsic axonal regeneration capacity may contribute to the known vulnerability of the IB4-labeled population of DRG neurons to peripheral nerve injury.
5-Hydroxytryptamine 4 (5-HT4) receptor agonists promote colonic propulsion. The alteration of circular muscle (CM) motility underlying this involves inhibition of contractility via smooth muscle 5-HT4 receptors and proximal colonic motility stimulation, the mechanism of the latter not having been characterized. Our aim was to identify and characterize a 5-HT4 receptor-mediated stimulation of human colon CM contractile activity. 5-HT4 receptor ligands were tested on electrical field stimulation (EFS)-induced contractions of human colonic muscle strips cut in the circular direction (called 'whole tissue' strips). Additionally, after incubation of tissues with [3H]-choline these compounds were tested on EFS-induced release of tritium in whole tissue strips and in 'isolated' CM strips, obtained by superficial cutting in the CM layer. Tetrodotoxin and atropine blocked EFS-induced contractions of whole tissue CM strips. Prucalopride (0.3 micromol L-1) evoked a heterogenous response on EFS-induced contraction, ranging from inhibition (most frequently observed) to enhancement. In the release experiments, EFS-induced tritium efflux was blocked by tetrodotoxin. Prucalopride increased EFS-induced tritium and [3H]-acetylcholine efflux in whole tissue and in isolated CM strips. All effects of prucalopride were antagonized by the selective 5-HT4 receptor antagonist GR113808. The results obtained indicate the presence of excitatory 5-HT4 receptors on cholinergic nerves within the CM of human colon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.