The discovery of new cytokines normally relies on a prior knowledge of at least one of their biological effects, which is used as a criterion either for the purification of the protein or for the isolation of the complementary DNA by expression cloning. However, the redundancy of cytokine activities complicates the discovery of novel cytokines in this way, and the pleiotropic nature of many cytokines means that the principal activities of a new cytokine may bear little relation to that used for its isolation. We have adopted an alternative approach which relies on differential screening of an organized subtracted cDNA library from activated peripheral blood mononuclear cells, using the inducibility of lymphokine messenger RNAs by anti-CD28 as a primary screening criterion. The ligation of the CD28 antigen on the T lymphocyte by a surface antigen, B7/BB-1, expressed on activated B lymphocytes and monocytes is a key step in the activation of T lymphocytes and the accumulation of lymphokine mRNAs. Here we report the discovery by molecular cloning of a new interleukin (interleukin-13 or IL-13) expressed in activated human T lymphocytes. Recombinant IL-13 protein inhibits inflammatory cytokine production induced by lipopolysaccharide in human peripheral blood monocytes. Moreover, it synergizes with IL-2 in regulating interferon-gamma synthesis in large granular lymphocytes. Recent mapping of the IL-13 gene shows that it is closely linked to the IL-4 gene on chromosome 5q 23-31 (ref. 4). Interleukin-13 may be critical in regulating inflammatory and immune responses.
SR 31747 is a novel immunosuppressant agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae, SR 31747-treated cells accumulate the same aberrant sterols as those found in a mutant impaired in delta 8- delta 7-sterol isomerase. Sterol isomerase activity is also inhibited by SR 31747 in in vitro assays. Overexpression of the sterol isomerase-encoding gene, ERG2, confers enhanced SR resistance. Cells growing anaerobically on ergosterol-containing medium are not sensitive to SR. Disruption of the sterol isomerase-encoding gene is lethal in cells growing in the absence of exogenous ergosterol, except in SR-resistant mutants lacking either the SUR4 or the FEN1 gene product. The results suggest that sterol isomerase is the target of SR 31747 and that both the SUR4 and FEN1 gene products are required to mediate the proliferation arrest induced by ergosterol depletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.