Fragmentation is one of the mechanisms involved in rock avalanches. Quantifying the associated energy during a rock avalanche can help to assess the influence of fragmentation on post-failure mass movements. In this paper, in situ block size distributions of the intact rock mass and the debris deposits are presented and analyzed for nine rock avalanches, five in the Canadian Rocky Mountains and four in the European Alps. Degrees of fragmentation are estimated from these data. Two methods are examined to assess fragmentation energy, one based on the comminution theory, and one on the blasting energy used in the mining industry. The results show that, for the studied rock avalanches, there is a relationship between the reduction in diameter ratio, Rr = D50/d50 (where D50 and d50 are the mean diameter of the intact rock mass and the mean diameter of the debris, respectively), and the potential energy per unit volume normalized with respect to the point load strength of rock (γHG/σc), where γ is the unit weight of the material, HG is the vertical distance between the centres of gravity of the mass at the start and end positions, and σc is the point load strength). For the cases studied, fragmentation energy calculations average 20% of the potential energy. An empirical relationship between Rr and γHG/σc has been established and is used in the definition of a disintegration index (ID). This index seems to reflect the physics of the disintegration process, since it accounts for the fact that the reduction in diameter ratio is a function of the dissipated energy and the strength of the rock. These factors have long been known to affect fragmentation but have never been presented in a coherent manner for rock avalanches.Key words: rock avalanches, disintegration, fragmentation energy, Canadian Rocky Mountains, European Alps.
A landslide occurred on 10 May 2010, along the Salvail River, in the municipality of Saint-Jude, Quebec. Debris of the landslide was formed of clay having horst and graben shapes, typical of spreads in sensitive clays. A detailed investigation was carried out by the Ministère des Transports, de la Mobilité durable et de l'électrification des transports du Québec, in collaboration with Université Laval, with the objective of characterizing this landslide, determining the causes, and learning about its failure mechanism. The soil involved was a firm, grey, sensitive, lightly overconsolidated clay with some silt. Data from piezometers installed near the landslide indicated artesian conditions underneath the Salvail River. Cone penetration tests allowed the location of two failure surface levels: the first one starting 2.5 m below the initial river bed, extending horizontally up to 125 m, and a second one 10 m higher, reaching the backscarp. Investigation of the debris with onsite measurements, light detector and ranging surveys, cone penetration tests, and boreholes allowed a detailed geotechnical and morphological analysis of the debris and reconstitution of the dislocation mechanism of this complex spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.