Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here:
Prediabetes is a state of glycaemic dysregulation below the diagnostic threshold of type 2 diabetes (T2D). Globally, ~352 million people have prediabetes, of which 35–50% develop full-blown diabetes within five years. T2D and its complications are costly to treat, causing considerable morbidity and early mortality. Whether prediabetes is causally related to diabetes complications is unclear. Here we report a causal inference analysis investigating the effects of prediabetes in coronary artery disease, stroke and chronic kidney disease, complemented by a systematic review of relevant observational studies. Although the observational studies suggest that prediabetes is broadly associated with diabetes complications, the causal inference analysis revealed that prediabetes is only causally related with coronary artery disease, with no evidence of causal effects on other diabetes complications. In conclusion, prediabetes likely causes coronary artery disease and its prevention is likely to be most effective if initiated prior to the onset of diabetes.
Genome-Wide Association Study (GWAS) Higher Blood pressure Arthritides Neuropsychiatric conditions Malignancies Lower Anaemias Lipidaemias Ischaemic heart disease Genetically higher central obesity Highlights Variants in HFE and TMPRSS6 are associated with higher liver iron. There is genetic evidence that higher central obesity causes higher liver iron. Liver iron variants are not organ specific and associate with multiple diseases.
The driving force behind the current global type 2 diabetes epidemic is insulin resistance in overweight and obese individuals. Dietary factors, physical inactivity, and sedentary behaviors are the major modifiable risk factors for obesity. Nevertheless, many overweight/obese people do not develop diabetes and lifestyle interventions focused on weight loss and diabetes prevention are often ineffective. Traditionally, chronically elevated blood glucose concentrations have been the hallmark of diabetes; however, many individuals will either remain ‘prediabetic’ or regress to normoglycemia. Thus, there is a growing need for innovative strategies to tackle diabetes at scale. The emergence of biomarker technologies has allowed more targeted therapeutic strategies for diabetes prevention (precision medicine), though largely confined to pharmacotherapy. Unlike most drugs, lifestyle interventions often have systemic health-enhancing effects. Thus, the pursuance of lifestyle precision medicine in diabetes seems rational. Herein, we review the literature on lifestyle interventions and diabetes prevention, describing the biological systems that can be characterized at scale in human populations, linking them to lifestyle in diabetes, and consider some of the challenges impeding the clinical translation of lifestyle precision medicine.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-017-0938-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.