Many-core processors offer massively parallel computation power representing a good opportunity for the design of highly integrated avionics systems. Such designs must face several challenges among which 1) temporal isolation must be ensured between applications and 2) bounds of WCET must be computed for real-time safety critical applications. In order to partially address those issues, we propose an appropriate execution model, that restricts the applications behaviours, which has been implemented on the KALRAY MPPA R-256. We tested the correctness of the approach through a series of benchmarks and the implementation of a case study.
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 18801The contribution was presented at RTNS 2016 :http://rtns16.univ-brest.fr/#page=home ABSTRACTMany-core processors are interesting candidates for the design of modern avionics computers. Indeed, the computational power offered by such platforms opens new horizons to design more demanding systems and to integrate more applications on a single target. However, they also bring challenging research topics because of their lack of predictability and their programming complexity. In this paper, we focus on the problem of mapping large applications on a complex platform such as the Kalray mppa R -256 while maintaining a strong temporal isolation from co-running applications. We propose a constraint programming formulation of the mapping problem that enables an efficient parallelization and we demonstrate the ability of our approach to deal with large problems using a real world case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.