Adaptation in time-triggered systems can be motivated by energy efficiency, fault recovery, and changing environmental conditions. Adaptation in time-triggered systems is achieved by preserving temporal predictability through metascheduling techniques. Nevertheless, utilising existing metascheduling schemes for time-triggered network-on-chip architectures poses design time computation and run-time storage challenges for adaptation using the resulting schedules. In this work, an algorithm for path reconvergence in a multi-schedule graph, enabled by a reconvergence horizon, is presented to manage the state-space explosion problem resulting from an increase in the number of scenarios required for adaptation. A meta-scheduler invokes a genetic algorithm to solve a new scheduling problem for each adaptation scenario, resulting in a multi-schedule graph. Finally, repeated nodes of the multi-schedule graph are merged, and further exploration of paths is terminated. The proposed algorithm is evaluated using various application model sizes and different horizon configurations. Results show up to 56% reduction of schedules necessary for adaptation to 10 context events, with the reconvergence horizon set to 50 time units. Furthermore, 10 jobs with 10 slack events and a horizon of 40 ticks result in a 23% average sleep time for energy savings. Furthermore, the results demonstrate the reduction in the state-space size while showing the trade-off between the size of the reconvergence horizon and the number of nodes of the multi-schedule graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.