MicroRNA (miRNAs) are negative regulators of gene expression and can function as tumor suppressors or oncogenes. Expression patterns of miRNAs and their role in the pathogenesis of hepatocellular carcinoma (HCC) are still poorly understood. We profiled miRNA expression in tissue samples (104 HCC, 90 adjacent cirrhotic livers, 21 normal livers) as well as in 35 HCC cell lines. A set of 12 miRNAs (including miR-21, miR-221/222, miR-34a, miR-519a, miR-93, miR-96, and let-7c) was linked to disease progression from normal liver through cirrhosis to full-blown HCC. miR-221/222, the most upregulated miRNAs in tumor samples, are shown to target the CDK inhibitor p27 and to enhance cell growth in vitro. Conversely, these activities can be efficiently inhibited by an antagomiR specific for miR-221. In addition, we show, using a mouse model of liver cancer, that miR-221 overexpression stimulates growth of tumorigenic murine hepatic progenitor cells. Finally, we identified DNA damage-inducible transcript 4 (DDIT4), a modulator of mTOR pathway, as a bona fide target of miR-221. Taken together, these data reveal an important contribution for miR-221 in hepatocarcinogenesis and suggest a role for DDIT4 dysregulation in this process. Thus, the use of synthetic inhibitors of miR-221 may prove to be a promising approach to liver cancer treatment.hepatocarcinogenesis | microRNA | antagomiRs | mouse model | DDIT4
The natural history of cancers associated with virus exposure is intriguing, since only a minority of human tissues infected with these viruses inevitably progress to cancer. However, the molecular reasons why the infection is controlled or instead progresses to subsequent stages of tumorigenesis are largely unknown. In this article, we provide the first complete DNA methylomes of double-stranded DNA viruses associated with human cancer that might provide important clues to help us understand the described process. Using bisulfite genomic sequencing of multiple clones, we have obtained the DNA methylation status of every CpG dinucleotide in the genome of the Human Papilloma Viruses 16 and 18 and Human Hepatitis B Virus, and in all the transcription start sites of the Epstein-Barr Virus. These viruses are associated with infectious diseases (such as hepatitis B and infectious mononucleosis) and the development of human tumors (cervical, hepatic, and nasopharyngeal cancers, and lymphoma), and are responsible for 1 million deaths worldwide every year. The DNA methylomes presented provide evidence of the dynamic nature of the epigenome in contrast to the genome. We observed that the DNA methylome of these viruses evolves from an unmethylated to a highly methylated genome in association with the progression of the disease, from asymptomatic healthy carriers, through chronically infected tissues and pre-malignant lesions, to the full-blown invasive tumor. The observed DNA methylation changes have a major functional impact on the biological behavior of the viruses.
By transactivating expression of miRNAs that repress expression of the ZEB1 and ZEB2 transcription factors, p53 inhibits the epithelial–mesenchymal transition.
We studied miRNA profiles in 4419 human samples (3312 neoplastic, 1107 nonmalignant), corresponding to 50 normal tissues and 51 cancer types. The complexity of our database enabled us to perform a detailed analysis of microRNA (miRNA) activities. We inferred genetic networks from miRNA expression in normal tissues and cancer. We also built, for the first time, specialized miRNA networks for solid tumors and leukemias. Nonmalignant tissues and cancer networks displayed a change in hubs, the most connected miRNAs. hsa-miR-103/106 were downgraded in cancer, whereas hsa-miR-30 became most prominent. Cancer networks appeared as built from disjointed subnetworks, as opposed to normal tissues. A comparison of these nets allowed us to identify key miRNA cliques in cancer. We also investigated miRNA copy number alterations in 744 cancer samples, at a resolution of 150 kb. Members of miRNA families should be similarly deleted or amplified, since they repress the same cellular targets and are thus expected to have similar impacts on oncogenesis. We correctly identified hsa-miR-17/92 family as amplified and the hsa-miR-143/145 cluster as deleted. Other miRNAs, such as hsa-miR-30 and hsa-miR-204, were found to be physically altered at the DNA copy number level as well. By combining differential expression, genetic networks, and DNA copy number alterations, we confirmed, or discovered, miRNAs with comprehensive roles in cancer. Finally, we experimentally validated the miRNA network with acute lymphocytic leukemia originated in Mir155 transgenic mice. Most of miRNAs deregulated in these transgenic mice were located close to hsa-miR-155 in the cancer network
The human APOBEC3 (A3A-A3H) locus encodes six cytidine deaminases that edit single-stranded DNA, the result being DNA peppered with uridine. Although several cytidine deaminases are clearly restriction factors for retroviruses and hepadnaviruses, it is not known if APOBEC3 enzymes have roles outside of these settings. It is shown here that both human mitochondrial and nuclear DNA are vulnerable to somatic hypermutation by A3 deaminases, with APOBEC3A standing out among them. The degree of editing is much greater in patients lacking the uracil DNA-glycolyase gene, indicating that the observed levels of editing reflect a dynamic composed of A3 editing and DNA catabolism involving uracil DNA-glycolyase. Nonetheless, hyper-and lightly mutated sequences went hand in hand, raising the hypothesis that recurrent lowlevel mutation by APOBEC3A could catalyze the transition from a healthy to a cancer genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.