In the proposed paper the transient interaction between periodic incoming wakes and the laminar separation bubble located on the rear suction surface of a typical, highly loaded LPT blade is investigated by means of highly resolved large-eddy simulations. An annular, large scale, 1.5-stage LPT test-rig, equipped with a modified T106 turbine blading and an upstream rotating vortex generator is considered and the numerical predictions are compared against hot film array measurements. In order to accurately assess both baseline transition and wake impact, simulations were conducted with unperturbed and periodically perturbed inflow conditions. Main mechanisms of transition and wake-boundary layer interaction are investigated utilizing a frequency-time domain analysis. Finally visualizations of the main flow structures and shear layer instabilities are provided utilizing the q-criterion as well as the finite-time Lyapunov exponent.
This work presents an approach to the contextual integration of fluid selection and compressor design for the cycle design of efficient industrial heat pumps. The vapor-compression cycle of an air-water heat pump operated at 42 °C source and 82 °C target temperature is investigated as a theoretical case study. An optimization study is performed, which includes the assessment of suitable refrigerants. Besides well-known single-component refrigerants, various binary mixtures are considered. The cycle optimization aims at simultaneously providing high cycle coefficient of performance and volumetric heating capacity. Cycle operation with the mixtures R-41/Trans-2-Butene (10, 90) mol % and CO2/R-161 (40, 60) mol % yields the highest values of these parameters, respectively. For further evaluation, centrifugal compressors operated with each of the two promising mixtures are designed with an in-house meanline program. In addition, the compressor design for the hydrofluoro-olefin refrigerant R-1234ze(Z) is considered as a reference. All designs are reviewed with respect to cycle as well as compressor design criteria and the applied methodology will assist designers in identifying key decision variables. The comprehensive design assessment suggests that CO2/R-161 (40, 60) mol % provides the best overall solution for an efficient cycle with a compact compressor design.
In this work, the performance characteristics and the flow field of a centrifugal compressor operating with supercritical CO2 are investigated by means of three-dimensional CFD. The considered geometry is based on main dimensions of the centrifugal compressor installed in the supercritical CO2 compression test-loop operated by Sandia National Laboratories. All numerical simulations are performed with a recently developed in-house hybrid CPU/GPU compressible CFD solver. Thermodynamic properties are computed through an efficient and accurate tabulation technique, the Spline-Based Table Look-Up Method (SBTL), particularly optimised for the applied density-based solution procedure. Numerical results are compared with available experimental data and accuracy as well as potentials in computational speedup of the solution method in combination with the SBTL are evaluated in the context of supercritical CO2 turbomachinery.
The influence of turbulence modeling approach by means of (U)RANS and large eddy simulation (LES) on the overall modeling of turbulent condensing wet steam flows is investigated using the example of a low-pressure steam turbine cascade. For an accurate numerical treatment of turbulence in the presence of shock waves, necessary for predictive scale-resolving computations, a hybrid flux treatment switches between a baseline nondissipative central flux in energy consistent split form and a shock-capturing upwind flux in shocked regions based on a shock sensor. Condensation is realized by a monodispersed Euler–Euler source term model, the equation of state by the highly efficient and accurate spline based table lookup method (SBTL). The numerical treatment is validated with a decay of homogeneous isotropic turbulence test case containing eddy shocklets. The measurement results of the condensing wet steam cascade are overall much better matched by LES compared to RANS and URANS. Analysis shows that the LES is much better able to account for the inherently unsteady nature of the spontaneous condensation process and its interaction with the trailing edge shock wave structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.