Lithium‐sulfur batteries have the potential to replace lithium‐ion batteries in the future due to their high theoretical capacity and energy density but suffer from low cycling stability caused by the polysulfide shuttle. This work demonstrates a reduction of the polysulfide shuttle and increased cycling stability by using iron oxide and chromium oxide as additives for a simply fabricated lithium sulfide cathode. Adsorption isotherms were recorded, and monolayer adsorption capacities were determined for a better understanding of the interactions between transition metal oxides and polysulfides. A significant reduction of the shuttle mechanism can be deduced from the cyclization experiments. Similarly, the catalytic influence of chromium oxide and iron oxide on the oxidation could be shown by cyclic voltammetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.