Time-resolved measurements of tissue autofluorescence (AF) excited at 405 nm were carried out with an optical-fiber-based spectrometer in the bronchi of 11 patients. The objectives consisted of assessing the lifetime as a new tumor/normal (T/N) tissue contrast parameter and trying to explain the origin of the contrasts observed when using AF-based cancer detection imaging systems. No significant change in the AF lifetimes was found. AF bronchoscopy performed in parallel with an imaging device revealed both intensity and spectral contrasts. Our results suggest that the spectral contrast might be due to an enhanced blood concentration just below the epithelial layers of the lesion. The intensity contrast probably results from the thickening of the epithelium in the lesions. The absence of T/N lifetime contrast indicates that the quenching is not at the origin of the fluorescence intensity and spectral contrasts. These lifetimes (6.9 ns, 2.0 ns, and 0.2 ns) were consistent for all the examined sites. The fact that these lifetimes are the same for different emission domains ranging between 430 and 680 nm indicates that there is probably only one dominant fluorophore involved. The measured lifetimes suggest that this fluorophore is elastin.
Photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) or its derivatives as precursors of protoporphyrin IX (PPIX) is routinely used in dermatology for the treatment of various pathologies. However, this methodology suffers to some extent from a limited efficacy. Therefore, the main goal of this study was to investigate the modulation and pharmacokinetics of PPIX buildup after a 5 h incubation with ALA (1.5 mM) and one of its derivatives, the hexyl ester of ALA (h-ALA) (1.5 mM), on the human epidermal equivalent Epidex. PPIX production was modulated with (L+) ascorbic acid iron (II) salt (LAI) or the iron (II)-specific chelating agent deferoxamine (DFO). PPIX fluorescence from the Epidex layers was measured up to 150 h after the precursor administration using a microspectrofluorometer (lambda(ex): 400 +/- 20 nm; lambda(det): 635 nm). The maximum PPIX fluorescence intensity induced by h-ALA was about 1.7 x larger than that induced by ALA. The addition of DFO resulted in a more than 50% increase in PPIX fluorescence for both precursors. The decay half life measured for PPIX fluorescence is 30 and 42.5 h, respectively, for ALA and h-ALA. These half lives are doubled when the samples contain DFO. In the samples with the highest fluorescence intensity, a modified fluorescence spectrum was observed after 10 h, with the emergence of a peak at 590 nm, which is attributed to zinc protoporphyrin IX (Zn PPIX).
Autofluorescence (AF) bronchoscopy is a useful tool for early cancer detection. However the mechanisms involved in this diagnosis procedure are poorly understood. We present an in vivo autofluorescence imaging study to access the depth of the principal contrast mechanisms within the bronchial tissue comparing a narrow band and broad band violet fluorescence excitation. Knowledge of this parameter is crucial for the optimization of the spectral and optical design of clinical diagnostic AF imaging devices. We observed no differences in the chromatic contrast using the two excitation modes, indicating that the principal contrast mechanisms have a non-superficial character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.