Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS) from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms.
The csnR gene, localized at the beginning of an operon, csnR-K, which organization is conserved through many actinomycete genomes, was previously shown to repress the transcription of the chitosanase gene csnA in Streptomyces lividans. However, knowledge on the function of the whole csnR-K operon in the metabolism of chitosan (an N-deacetylated derivative of chitin) remained limited. Mutants of S. coelicolor A3(2) harboring partial or total deletions of the csnR-K operon were analyzed for their capacity to uptake glucosamine oligosaccharides (GlcN)n. The csnR-K operon was autoregulated by CsnR repressor and its transcription was inducible by GlcN oligosaccharides. The operon controlled the uptake of GlcN oligosaccharides in S. coelicolor A3(2), with a minor contribution to the consumption of monomeric GlcN but not chitin-related N-acetylated derivatives. The deletion of the whole operon abolished the uptake of GlcN oligosaccharides. The CsnEFG transporter encoded by this operon is the front door for the assimilation of chitosan-derived hydrolysis products in S. coelicolor A3(2). The ATP-binding component MsiK was essential for CsnEFG transport function. Also, deletion of msiK abolished the induction of csnA transcription by GlcN oligosaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.