The physicochemical properties (density, viscosity, and carbon dioxide solubility) of ionic liquids based on pyridinium, pyrrolidinium, and ammonium cations were studied at atmospheric pressure and as a function of temperature between (293 and 343) K. The influence of the inclusion of oxygen functional groups (hydroxyl and ester) in the cations was assessed by comparing their behavior with that of similar nonfunctionalized ionic liquids. We observed that the presence of oxygen groups does not affect the density significantly. The inclusion of an ester group in the alkyl-side chain of pyridinium or ammonium cations greatly increases the viscosity of bis(trifluoromethylsulfonyl)imide ionic liquids (5 times for pyridinium, 2 times for ammonium-based ionic liquids at 293 K), while the presence of hydroxyl groups only slightly increases their viscosity (16 % increase for ammonium at 293 K). Carbon dioxide solubilities are not significantly influenced by the introduction of oxygen functional groups in the cations for the ammonium-based ionic liquids. In the case of the pyridinium-based ionic liquids, the solubility of carbon dioxide significantly decreases (up to a 48 % decrease in mole fraction) due to a defavorable entropic contribution to the Gibbs energy of solvation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.