Hyperexcitability of spinal reflexes and reduced synaptic inhibition are commonly associated with spasticity after spinal cord injury (SCI). In adults, the activation of gamma-aminobutyric acid(A) (GABAA) and glycine receptors inhibits neurons as a result of low intracellular chloride (Cl-) concentration, which is maintained by the potassium-chloride cotransporter KCC2 (encoded by Slc12a5). We show that KCC2 is downregulated after SCI in rats, particularly in motoneuron membranes, thereby depolarizing the Cl- equilibrium potential and reducing the strength of postsynaptic inhibition. Blocking KCC2 in intact rats reduces the rate-dependent depression (RDD) of the Hoffmann reflex, as is observed in spasticity. RDD is also decreased in KCC2-deficient mice and in intact rats after intrathecal brain-derived neurotrophic factor (BDNF) injection, which downregulates KCC2. The early decrease in KCC2 after SCI is prevented by sequestering BDNF at the time of SCI. Conversely, after SCI, BDNF upregulates KCC2 and restores RDD. Our results open new perspectives for the development of therapeutic strategies to alleviate spasticity.
In healthy adults, activation of γ-aminobutyric acid (GABA) A and glycine receptors inhibits neurons as a result of low intracellular chloride concentration ([Cl -] i ), which is maintained by the potassium-chloride cotransporter KCC2. A reduction of KCC2 expression or function is implicated in the pathogenesis of several neurological disorders, including spasticity and chronic pain following spinal cord injury (SCI). Given the critical role of KCC2 in regulating the strength and robustness of inhibition, identifying tools that may increase KCC2 function and, hence, restore endogenous inhibition in pathological conditions is of particular importance. We show that activation of 5-hydroxytryptamine (5-HT) type 2A receptors to serotonin hyperpolarizes the reversal potential of inhibitory postsynaptic potentials (IPSPs), E IPSP , in spinal motoneurons, increases the cell membrane expression of KCC2 and both restores endogenous inhibition and reduces spasticity after SCI in rats. Up-regulation of KCC2 function by targeting 5-HT 2A receptors, therefore, has therapeutic potential in the treatment of neurological disorders involving altered chloride homeostasis. However, these receptors have been implicated in several psychiatric disorders, and their effects on pain processing are controversial, highlighting the need to further investigate the potential systemic effects of specific 5-HT 2A R agonists, such as (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide (TCB-2). ] i (depolarizing shift of the chloride equilibrium potential, E Cl ) dramatically compromises the inhibitory control of firing rate and excitatory inputs (5-7). Given the role of KCC2 in regulating the strength of inhibitory synaptic transmission, identifying tools that may increase KCC2 function and, hence, restore endogenous inhibition in pathological conditions is of particular importance.Spasticity is a disabling complication affecting individuals with spinal cord injury (SCI) and is characterized by a velocity-dependent increase in muscle tone resulting from hyperexcitable stretch reflexes, spasms, and hypersensitivity to normally innocuous sensory stimulations (8, 9). Down-regulation of KCC2 after SCI in rats is implicated in the development of spasticity (10) and chronic pain (11,12). Notably, the expression of KCC2 in the motoneuron membrane is reduced, and, concomitantly, the density of cytoplasmic clusters is higher, suggesting that the surface stability of the transporter is reduced in these pathological conditions (10).Mounting evidence indicates that phosphorylation of KCC2 in the C-terminal intracellular domain dynamically regulates its activity and surface expression (1). In particular, phosphorylation by protein kinase (PK)C, enhances KCC2 activity and reduces endocytosis (13). Interestingly, activation of 5-hydroxytryptamine type 2 receptors (5-HT 2 Rs) to serotonin stimulates PKC and strengthens the left-right alternation of motor bursts observed during locomotion (14-16), which rely on reciprocal inhibition (17, 18). ...
Upregulation of the persistent sodium current (I(NaP)) in motoneurons contributes to the development of spasticity after spinal cord injury (SCI). We investigated the mechanisms that regulate I(NaP) and observed elevated expression of voltage-gated sodium (Nav) 1.6 channels in spinal lumbar motoneurons of adult rats with SCI. Furthermore, immunoblots revealed a proteolysis of Nav channels, and biochemical assays identified calpain as the main proteolytic factor. Calpain-dependent cleavage of Nav channels after neonatal SCI was associated with an upregulation of I(NaP) in motoneurons. Similarly, the calpain-dependent cleavage of Nav1.6 channels expressed in human embryonic kidney (HEK) 293 cells caused the upregulation of I(NaP). The pharmacological inhibition of calpain activity by MDL28170 reduced the cleavage of Nav channels, I(NaP) in motoneurons and spasticity in rats with SCI. Similarly, the blockade of I(NaP) by riluzole alleviated spasticity. This study demonstrates that Nav channel expression in lumbar motoneurons is altered after SCI, and it shows a tight relationship between the calpain-dependent proteolysis of Nav1.6 channels, the upregulation of I(NaP) and spasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.