Nitric oxide (NO) acts in the nervous system to activate guanylyl cyclase and increase cGMP. One target for cGMP appears to be the cGMP-stimulated phosphodiesterase (PDE2A), which is widely expressed in the brain and provides a molecular mechanism for NO to regulate cAMP levels. We have found that PDE2A is highly expressed in the medium spiny neurons of the striatum, which project to the pallidum and substantia nigra. These cells express dopamine-stimulated adenylyl cyclase, and we have found that increases in cAMP in these neurons, produced by activation of the D1-type dopamine receptor, are dramatically enhanced by the general phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine and the PDE2A-selective inhibitor erythro-p-(2-hydroxyl-3-nonyl)adenine (EHNA). These results indicate that PDE2A plays a major role in regulating dopamine-stimulated cAMP production in striatal neurons. EHNA also enhances NO-induced increases in striatal cGMP. In addition, dopamine appears to act via another receptor, activated by the agonist SKF83959, to increase striatal cGMP in a NO-dependent manner. Together, these observations indicate that striatal NO producing interneurons can act via the PDE2A in the medium spiny neurons to regulate the cAMP response to dopamine stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.