Chromogranins are a family of acidic soluble proteins which exhibit widespread distribution in endocrine cells and neurons. Chromogranin A (CGA), the major soluble component of the secretory granules in chromaffin cells of the adrenal medulla, is a single polypeptide chain of 431 residues with an apparent molecular mass of 70-75 kDa and a PI of 4.5-5. In mature bovine chromaffin granules about 50% of the CGA has been processed. In the present paper, the structural features of the proteolytic degradation mechanism have been characterized with regard to the possible function of CGA as a prohormone, as suggested by recent studies.CGA-derived components present in chromaffin granules were subjected to either two-dimensional gel electrophoresis or HPLC and the N-terminal of each fragment was sequenced. Immunoblotting with antisera to specific sequences within the CGA molecule were used to characterize these fragments further at their C-terminal. In addition, a similar approach was performed to characterize CGA-derived fragments released into the extracellular space from directly depolarized bovine cultured chromaffin cells.Our results identified several proteolytic cleavage sites involved in CGA degradation. Intragranular processing occurs at 12 cleavage sites along the peptide chain located in both N-and Cterminal moieties of the protein; a preferential proteolytic attack in the C-terminal part was noted. We found that CGA processing also occurs in the extracellular space after release, generating new shorter fragments. The proteolytic cleavage sites identified in this study were compared with the cleavage points which are thought to be involved in generating CGA fragments with specific biological activity : pancreastatin, chromostatin and N-terminal vasostatin fragments. In addition, a new 12-amino-acid CGA-derived peptide corresponding to the sequence 65 -76 was identified in the soluble core of purified chromaffin granules. This short peptide was released, together with catecholamines, after stimulation of cultured chromaffin cells suggesting its presence within the storage complex of chromaffin granules. The specific biological activity of this CGA-derived fragment remains to be determined.The secretory vesicles of the bovine adrenal medullary chromaffin cell contain a complex mixture of secretory products which include low-molecular-mass constituents such as catecholamines, ascorbate, nucleotides, enkephalins, calcium and several water-soluble proteins. These proteins include dopamine P-hydroxylase, and a family of acidic proteins called chromogranins.Chromogranins, which are widely distributed in endocrine cells and neurons [l], are a complex mixture of proteins, due in part to the fact that these proteins are processed within the chromaffin granules. The major component, chromogranin A (CGA, which comprises 40% of total soluble granule proteins) is a single polypeptide chain with an apparent molecular mass of 70-75 kDa estimated by NaCIP, 25 mM sodium phosphate pH 7.5 containing 0.9% NaCI.
Chromogranins constitute a family of acidic soluble proteins widely distributed in endocrine cells and neurons. Chromogranin A, the major soluble component in bovine adrenal medullary secretory granules in chromaffin cells, has been shown to be actively processed to peptide fragments [Metz-Boutigue, M. H., Garcia-Sablone, P., Hogue-Angeletti, R. & Aunis, D. (1993) Eur. J. Biochem. 217, 247-2571. In the present paper, the structural features of the proteolytic degradation mechanism of chromogranin B/ secretogranin I have been characterized with regard to the possible function of this protein as a precursor of biologically active peptides.Chromogranin-B-derived fragments present in bovine chromafh granules were identified by microsequencing after separation by two-dimensional gel electrophoresis or high-performance liquid chromatography. A similar approach was performed to characterize chromogranin-B-derived fragments released into the extracellular space from depolarized bovine cultured chromaffin cells. In chromogranin B, 18 cleavage sites were identified along the protein chain and chromogranin Bhecretogranin I fragments were generated by proteolytic attack at both the N-terminus and C-terminus.A major fragment corresponding to residues 614-626 of the C-terminal sequence, was identified in the extracellular space; this peptide was found to share sequence and structural similarities with the lytic domain of cecropins and, as expected from this similarity, to display potent antibacterial properties. Endogenous and synthetic peptides were active on Micrococcus luteus, killing bacteria in the micromolar concentration range. The synthetic peptide slows the growth of Bacillus megaterium and was inactive towards Escherichia coli. In addition, the synthetic peptide was unable to induce hemolytic activity. This antibacterial function might be of biological significance in the neuroendocrine system of living organisms. We propose to name this peptide secretolytin.
Chromogranins constitute a family of acidic soluble proteins widely distributed in endocrine cells and neurons. Chromogranin A, the major soluble component in bovine adrenal medullary secretory granules in chromaffin cells, has been shown to be actively processed to peptide fragments [Metz-Boutigue, M. H., Garcia-Sablone, P., Hogue-Angeletti, R. & Aunis, D. (1993) Eur. J. Biochem. 217, 247-257]. In the present paper, the structural features of the proteolytic degradation mechanism of chromogranin B/secretogranin I have been characterized with regard to the possible function of this protein as a precursor of biologically active peptides. Chromogranin-B-derived fragments present in bovine chromaffin granules were identified by microsequencing after separation by two-dimensional gel electrophoresis or high-performance liquid chromatography. A similar approach was performed to characterize chromogranin-B-derived fragments released into the extracellular space from depolarized bovine cultured chromaffin cells. In chromogranin B, 18 cleavage sites were identified along the protein chain and chromogranin B/secretogranin I fragments were generated by proteolytic attack at both the N-terminus and C-terminus. A major fragment corresponding to residues 614-626 of the C-terminal sequence, was identified in the extracellular space; this peptide was found to share sequence and structural similarities with the lytic domain of cecropins and, as expected from this similarity, to display potent antibacterial properties. Endogenous and synthetic peptides were active on Micrococus luteus, killing bacteria in the micromolar concentration range. The synthetic peptide slows the growth of Bacillus megaterium and was inactive towards Escherichia coli. In addition, the synthetic peptide was unable to induce hemolytic activity. This antibacterial function might be of biological significance in the neuroendocrine system of living organisms. We propose to name this peptide secretolytin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.