Iron-sulfur clusters are versatile electron transfer cofactors, ubiquitous in metalloenzymes such as hydrogenases. In the oxygentolerant Hydrogenase I from Aquifex aeolicus such electron "wires" form a relay to a diheme cytb, an integral part of a respiration pathway for the reduction of O 2 to water. Amino acid sequence comparison with oxygen-sensitive hydrogenases showed conserved binding motifs for three iron-sulfur clusters, the nature and properties of which were unknown so far. Electron paramagnetic resonance spectra exhibited complex signals that disclose interesting features and spin-coupling patterns; by redox titrations three iron-sulfur clusters were identified in their usual redox states, a ½3Fe4S and two ½4Fe4S , but also a unique high-potential (HP) state was found. On the basis of 57 Fe Mössbauer spectroscopy we attribute this HP form to a superoxidized state of the [4Fe4S] center proximal to the [NiFe] site. The unique environment of this cluster, characterized by a surplus cysteine coordination, is able to tune the redox potentials and make it compliant with the ½4Fe4S 3þ state. It is actually the first example of a biological [4Fe4S] center that physiologically switches between 3þ, 2þ, and 1þ oxidation states within a very small potential range. We suggest that the (1 þ ∕2þ) redox couple serves the classical electron transfer reaction, whereas the superoxidation step is associated with a redox switch against oxidative stress.electrochemistry | EPR | iron-sulfur centers | O2-sensitivity H ydrogenases are metalloproteins occurring in the metabolic pathway of a wide variety of microbial organisms and catalyze the reversible oxidation of dihydrogen: H 2 ⇌ 2H þ þ 2e − (1). The growing interest in alternative sources of energy has focused scientific research on understanding and engineering these enzymes for future applications (2). One of the major limitations of hydrogenases, however, is their sensitivity towards oxygen. Recently, the discovery of hydrogenases that retain catalytic activity in oxygenic environments has potentially opened new applications as "green" vanguard catalysts, in particular as electrocatalysts on electrodes for biofuel cells (3,4).Aquifex aeolicus is a hyperthermophilic Knallgas bacterium with optimum growth temperature of 85°C (5). This microorganism harbors three distinct [NiFe] hydrogenases, among which Hase I is located in the aerobic respiration pathway and attached to the membrane via a diheme cytb (6). Hase I consists of two subunits; the large subunit contains the hetero-bimetallic nickel-iron site and the small subunit the electron transfer cofactors, namely iron-sulfur clusters (6). Based on spectroelectrochemical studies, this enzyme exhibits enhanced thermostability and tolerance for inhibitors (e.g., O 2 and CO) (4, 7).Although the structures of O 2 -sensitive hydrogenases are well characterized (8, 9), such information is still lacking for O 2 -tolerant enzymes. The molecular mechanism and structural determinants for this increased oxygen tolerance remain to ...
Hydrogenases catalyze the oxidation and production of H(2). The fact that they could be used in biotechnological devices if they resisted inhibition by O(2) motivates the current research on their inactivation mechanism. Direct electrochemistry has been thoroughly used in this respect but often in a qualitative manner. We propose a new and precise chronoamperometric method for studying the anaerobic inactivation mechanism of hydrogenase, which we apply to the oxygen-tolerant NiFe enzyme from Aquifex aeolicus . We demonstrate that the voltammetric data cannot be used for measuring the reduction potential of the so-called NiB inactive state, even in the small scan rate limit. We show that the inactivation mechanism proposed for standard (oxygen-sensitive) NiFe hydrogenases does not apply in the case of the enzyme from A. aeolicus . In particular, the activation and inactivation reactions cannot follow the same reaction pathway.
International audienceUsing redox enzymes as biocatalysts in fuel cells is an attractive strategy for sustainable energy production. Once hydrogenase for H2 oxidation and bilirubin oxidase (BOD) for O2 reduction have been wired on electrodes, the enzymatic fuel cell (EFC) thus built is expected to provide sufficient energy to power small electronic devices, while overcoming the issues associated with scarcity, price and inhibition of platinum based catalysts. Despite recent improvements, these biodevices suffer from moderate power output and low stability. In this work, we demonstrate how substrate diffusion and enzyme distribution in the bioelectrodes control EFC performance. A new EFC was built by immobilizing two thermostableenzymes in hierarchical carbon felt modified by carbon nanotubes. This device displayed very high power and stability, producing 15.8 mW h of energy after 17 h of continuous operation. Despite the large available electrode porosity, mass transfer was shown to limit the performance. To determine the optimal geometry of the EFC, a numerical model was established, based on a finite element method (FEM). This model allowed an optimal electrode thickness of less than 100 mm to be determined, with a porosity of 60%. Thanks to very efficient enzyme wiring and high enzyme loading, non-catalytic signals for both enzymes were detected and quantified, enabling the electroactive enzyme distribution in the porouselectrode to be fully determined for the first time....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.