This study was aimed at examining whether pitch height and pitch change are mentally represented along spatial axes. A series of experiments explored, for isolated tones and 2-note intervals, the occurrence of effects analogous to the spatial numerical association of response codes (SNARC) effect. Response device orientation (horizontal vs. vertical), task, and musical expertise of the participants were manipulated. The pitch of isolated tones triggered the automatic activation of a vertical axis independently of musical expertise, but the contour of melodic intervals did not. By contrast, automatic associations with the horizontal axis seemed linked to music training for pitch and, to a lower extent, for intervals. These results, discussed in the light of studies on number representation, provide a new example of the effects of musical expertise on music cognition.
Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961–969. (doi:10.1016/j.neuropsychologia.2011.02.00210.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception–action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals.
The aim of this study was to determine if two dimensions of song, the phonological part of lyrics and the melodic part of tunes, are processed in an independent or integrated way. In a series of five experiments, musically untrained participants classified bi-syllabic nonwords sung on two-tone melodic intervals. Their response had to be based on pitch contour, on nonword identity, or on the combination of pitch and nonword. When participants had to ignore irrelevant variations of the non-attended dimension, patterns of interference and facilitation allowed us to specify the processing interactions between dimensions. Results showed that consonants are processed more independently from melodic information than vowels are (Experiments 1-4). This difference between consonants and vowels was neither related to the sonority of the phoneme (Experiment 3), nor to the acoustical correlates between vowel quality and pitch height (Experiment 5). The implication of these results for our understanding of the functional relationships between musical and linguistic systems is discussed in light of the different evolutionary origins and linguistic functions of consonants and vowels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.